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true gravity vector is available. This research explores both real time

and a priori schemes for using LW6 gradiometer information to reduce the
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In the real time application, information derived from the gradio-

meter is filtered to produce estimates of position and velocity error.

The problem is to derive accurate filters in the presence of an inherently

transcendental gravity field. Conventional Kalman filters are very,

cumbersome to apply in this instance. However, the sensitivity of iner-

tial navigation systems at Schuler frequency makes it possible to neglect

errors outside of a narrow band of frequencies centered at Schuler fre-

quency. This approximation leads to low order filters which may be
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Chapter I

INTRODUCTION

A. PROBLEM STATEMENT

For inertial navigation a gyro stabilized platform is used to

spatially orient accelerometers which measure specific force. Specific

force is the vector (difference) of the quantity to be determined, inertial

acceleration, and gravity. Therefore to isolate inertial acceleration

the true gravity vector must be found. It cannot be measured directly

from a moving vehicle because it is inseparable from the effects of inertial

acceleration. However, the gradients of the gravity field are separable

from those of a linear acceleration field (zero if nonrotating) thus making

it possible to calculate the changes in gravity. By spatially integrating

these changes on-line, variations in the true gravity vector may be deter-

mined. If these variations are used in conjunction with periodic platform

leveling and position fixes, the true gravity vector can be found. It is

now a simple matter to difference the true and assumed (from a reference

gravity model) gravity vectors to obtain the gravity perturbation vector.

The horizontal components of the gravity perturbation vector represent the

deflections of the vertical uncertainties of which cause errors in the

horizontal inertial navigation channels.

The problem addressed by this research is to determine how to use

the gradiometer to most effectively reduce the gravity deflection error

contribution to the inertial navigation system (INS) horizontal position

and velocity outputs. This is distinct from the greater question of how

large the geodetic error is when compatec with the instrument errors in

the inertial navigation system. A discussion of this separate question

is given by Hildebrant, et al., [l] and shows, for instance, that the

geodetic portion of the total inertial navigation velocity error budget

may be as high as 70% in state-of-the-art systems. There arc two ways

to use the gradiometer to improve inertial navigation. The first way

is to estimate in real time the velocity and position errors propagating

!ii -1-



in the INS basic output loop. Ini reality this portion of the problem

primarily involves the derivation and evaluation of approximate low-

order filters for velocity and position error estimation. Approximate

filters are advantageous because they circumvent the problems which

arise from working with inherently transcendental gravity field spectra.

The second method is to survey the area which the INS carrier vehicle

is to traverse. Using this information the reference gravity model

contained in the INS output loop is updated to reduce the residual be-

tween true and reference gravity. This involves updating the gravity

perturbation power spectrum and subsequently determining rms position and

velocity error for survey parameter optimization and real time comparisons.

Since navigation on the surface of the earth is generally more

important than vertical position, this research will focus on only the

horizontal channels of a locally level INS, though some of the methods

could be applied to the vertical channel.

B, GIIADIOMETER DEVELOPMENT AND PREVIOUS WORK

Moving base gravity gradiometers have been under development for the

past 13 years. This development, done under the auspices of the Air Force,

Navy and the Ie tense Mapping Agency, resulted in two workable gradiome-

ters: one by the Bell Laboratories [21, and one by the Draper Labs [3]. The

Bell instrument was chosen by the Navy as the most advantageous

design for their application, and will be used when reference

to hardware is necessary. The Bell instrument is commonly called a

"rotating gravity gradiometer" (RGG) because the measurement unit is

actually rotated to separate spectrally the gradient signals from out-

side disturbances.

The grndiometer research done at Stanford began in 1972

under the auspices of the U.S. Air Force Geophysics Laboratory. Pelka's

dissertation r41 dealt with improving the accuracy of the Hughes'

(prototype) gradiometer using on-line parameter estimation and control

techniques. Subsequent studites by DeBra, Breakwell, Schaechter, and

-2-



Ku rosaki dcalL with tIhe. develo)mentL of' gra viLy mo(del, t. .e(I to (leIer-

mine the performance of the gradiometer in mapping the earth's gravity

field [51. The culmination of this work describes the use of a gravity

gradiometer aboard a horizontally moving vehicle to estimate gravity

deflection Pnd anomaly [6]. Gradiometer derived improvements of inertial

navigation and gravity survey work are presented in this dissertation.

C. NEW RESULTS

Whereas most previous research on gradiometers has dealt with the

instruments themselves, the research reported here deals with the

processing of gradiometer data both in real time and after the fact

(the latter being called the "survey" use). No other investigators

have addressed these aspects of the problem as they have been addressed

here.

Specific contributions are:

1. The development of a method for deriving approximate Wiener

filters for estimation of INS position and 
velocity error;

2. The statistical evaluation of these filters to determine rela-

tive and absolute optimality;

3. The statistical evaluation of various survey 
schemes for update

of the reference gravity model;

4. Development of an improved version of Heller's 
gravity model

to portray more accurately the perturbation 
potential in light

of the latest gravity (lats available.

-3-
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1). THESIS OUTLINE

The full inertial navigation system error equations and the assump-

tions used to simplify thiem for use in this research are presented in

Chapter II.

Chapter III presents three statistical gravity perturbation models

used in the covariance analyses presented in Chapters V and VII. The

first model is rational (the reason for its use) but somewhat inaccurate.

The second and third models are transcendental but are representative

of the most accurate gravity perturbation models available.

In Chapter IV the basic theory used in deriving approximate real

time filters is shown, along with examples, for a wide spectrum of meas-

urement combinations.

Several filters obtained in Chapter IV are evaluated and compared

by covariance methods in Chapter V.

In Chapter VI the theory used in analyzing the effect of a gravity

survey on INS performance is developed.

In Chapter VII covariance data [or the survey scheme is computed

and compared with data obtained from the real time application. The

ultimate goal of this comparison is to determine which gradiometer

application is most desirable under a given set of conditions.

In Chapter VIII the conclusions and future recommendations of this

research are presented.

-4-



Chapter II

INERTIAL NAVIGATION ERROR EQUATIONS

Before looking at the error equations associated with conventional

inertial navigation systems (INSs) it is instructive to examine the

basic navigation loop used throughout this research. Figure 1I-1 is

a schematic of this loop. Note that some type of external velocity
mmeasurement (V ) is assumed for damping of' Schuler oscillations.

A. FULL INERTIAL NAVIGATION SYSTEM ERROR

EQUATIONS

The error equations relating the gravity perturbations to INS

position and velocity error have been developed in detail by Heller [71.

These equations assume an INS mechanized in a local-level wander-azimuth

frame and coordinatized in a local-level north-pointing frame. The

full position and velocity error equations for the horizontal channels

of an INS are given below [from Ref. 71:

N = NAzE + A - + gN

VE

- (21 sin L + E tan L) 6V E

VN

+ V8 - k5V - kVE M + k + klVN; (2.1)
R z N k* E N

. 2
5VE = E + A zlN - AN*z -wS RE + gE + (N sin L

VE VE
+ -1 tan L)EV + (211 cos L + R;."V

- N z

-kF')V ~kV~~ + k VN * + k:-, (2.2)

Et
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V E  V N= - tan L RE - IN R ; (2.3)
5fN "N It, E it z

VE 
VE

RE = FVE + tan L RN - R (2.4)

B. SIMPLIFYING ASSUMPTIONS AND RESULTING

ERROR EQUATIONS

The error equations are linear thus allowing different error con-

tributors to be superposed. In order to focus on gravity induced errors

the nongravitational error sources in (2.1) to (2.4) (i.e., accelerometer

bias, p, platform misalignment, $, etc.) may be set aside [11. Further-

more, the north and east equations may be decoupled without limitation to re-

search objectives. Therefore the Following assumptions have been made.

1) The carrier vehicle travels due north*;

2) There are no platform misalignment or accelerometer bias errors:

3) The carrier vehicle altitude is fixed;

4) The earth is nonrotating.

With these assumptions the horizontal channel error equations become

* 2
U = -5 R - k[ -,V - Vm + g (2.5)

x x x x

61= -2R y -k - V + g (2.6)
Y sFy y y y

5R = tv (2.7)x x

5i = 6v (2.8)
y y

This assumption is simply a anifestation of the particular north-east

down coordinate system chosen in (2.1) through (2.4). Equations (2.5)
through (2.8) would remain the same had another local-level coordinate

system been selected to coincide with the in-track (x) and cross-track

(y) directions of a vehicle traveling other than north. Thus the

analysis done here applies to a carrier vehicle traveling In any direc-

tion over a non-rotating earth.

-7-
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Note that since the carrier vehicle travels due north this direc-

tion will henceforth be denoted in-track (x subscript) and the easterly

direction denoted cross-track (y subscript),

-8-.
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Chapter III

STATISTICAL GRAVITY PERTURBATION MO)ELS

* A stochastic study of INS position and velocity error requires that

the gravity perturbation terms in Eqs. (2.5) and (2.6) be statistically

modeled. Three models were used in this study. The first is a relatively

inaccurate rational model used solely for Kalman filter comparisons, as

a rational model is necessary for a Kalman realization. The last two

models have the same basic form, the only difference being a slight para-

meter modification in the final version to fit observed data more closely.

These models are transcendental but portray more accurately the earth's

actual gravity field. All three of these models were developed by tile

processing of empirical data such as that collected by Rice [8].

A. SECOND-ORDER MODEL

The details of this model are fully detailed by Kasper [9] and reit-

erated by Heller [10]. To summarize briefly, it is a second-order model

consisting of zero mean white noise put through a shaping filter as shown

in Fig. III-1.

1
w 2 gx or gy(s + 2

FIG. III-1 SECOND-ORDER GRAVITY PERTURBATION MODEL

The Markov parameter f is defined as

= V/d (3.1)

where d is the vertical deflection ensemble chnracteristic dlista 'e.

The constant d in Kasper's model is related to the more commonly

known correlation distance (1)) by the relation: I) = 2.146d.

--



.... ....... .... ... .. i . . .. .. .... ...... ..

This model may be used in either the in-track or cross-track direc-

tions. lowever, the Kalman filter coi.iparisons need only be done cross-

track to demonstrate the accuracy of the approximate filters. The spec-

tral density of the white noise w is given as

4 3(T2  (3.2)

y

wile re

2 E2fcg = E~w 1 .

y

A state space description of this model, required in Ch. V, may be written

as

where x is a Markov Process state variable.

B. BASELINE HELLER MODEL

TIhis statistical model was developed by Ileller Fill and describes

perturbations in the earth's surface potential away from an ellipsoidal

geoid as fictitious white noise potential fluctuations restricted to a

few thin layers below the earth's surface. The model, as shown below,

is defined by the power spectral density (PSD) of surface potential

fluctuations

3 -21 )1Di
( w z 0) 0' 0) = E (3.4)

A-AU i

where I]

-10-



The values for the depths (Di's) and PSDs (oi's) of the three

layers of interest given by Heller are listed in Table 111-1.

Table III-1

BASELINE HELLER MODEL PARAMETERS

(kmn) (kmn /sec)
i I) 1

I ~-8
1 16.3 7.1 1' 10

-4
2 92.5 1.07 \ 10

-2I
3 390.5 1.16 10 -

To determine the relationship between surface potential fluctuations

and potential fluctuations at an altitude z above the earth's surface

it facilitates analysis to work with a "flat earth" approximation [12]

to Poisson's upward continuation formula for the earth's potential.

Poisson's upward continuation formula is given by

R ) 'r 2_R ,) AU it-4,

J(r, 6, 0) = 4 (r 2 2 2r 
3 / 2 dST' (3.5)

2 ! - -3/

where the direction of the vector r is determined by the (r, n, t) spher-

ical coordinate set, and the direction of R q is determined by the set

(Rm ', T') The integration of (3.5) is done over the entire earth's

surface. The details of the derivation of (3.5) are given in App. A.

Making the "flat earth" approximation (z -e< 1T) t.o (3.5)

ALJ(x, y; Z)= 2 2 *1 ,, G (tx, y; 0) (3. F),I X2 Y 2 1 z 2

-ii



where (lenotes convolution in two dimensions. Taking the fourier

transform of (3.6) yields

LU(:S; z) = e-L W( s; 0) (3.7)

This allows (3.4) to be rewritten as

3 -2z '1

il
s

; = e 2 LO 1) /"S; o) = *e(3.8)

Because Ileller has modeled the potential perturbations it is a

simple matter to obtain from (3.8) the two dimensional PSD expressions

for any of the gravity or gravity gradient perturbation components. In

fact, the two dimensional spectral density matrix relating g_., g g

SY is given by Kurosaki and Breakwell (13] as

x x,,y x~r~ -xyl~ -xl

x y y y R

3 -2z [ -X ~Ij -a l Y II 2 jWYl l2l3

M2-ID 2-2
i_- i _l -21 _jW p13

X Y Y

;2 1;12 Z,3 _ p 3 4

L J

where all uw's indicate spatial frequency variation.

The spectrnl-density matrix along the line y - 0 is required

heuitp5. the carrier vehicle is, by definition, always traveling in-track.

vas i mntrix is obtained by performing the following operation:

-12-



00' I s
S[M]i -2 [Ml d'1 (3,9)

I-D 2-D y

The results of this operation are again shown by Breakwell and Kurosaki [131

as

S[M]l

- ( i=a 
z(2z

3I

4 n5

0 zi[ (PlK:a) 0 -J--K, 2[(f(i) ~n ) 00-

3 a

n4 ( 2z )1

0 S1 0 2zi 0 (el 0 -21i)

whe re

KI( i.) = modified Bessel function of first order

= normalizedl frequency variable ( i. = 2zi(' )
i 1 I

'= differentiation with respect to the variable ..
I

Although in [MIlD the designated states are g, g and

the PSDs of the in-track spatial derivatives of" these quantities Px

Pxy' Pz are easily obtained by multiplication by .jcws . Iii addition.

xy xz xa

Pmay be found through the a pplica tion of Laplace's equation

+) , + ( .
-xx yy (a

, I

(f 1) O



The zero correlations in (3.10) are interesting because they show

which gradient perturbation components may be used to estimate g and gx y
in Eqs. (2.5) and (2.6). The zero correlation between g, and

x V
the other states indicates that the optimal estimate of g should

involve only the measurements rxy and y z . The optimal estimate of

gx' on the other hand, should use only Pxx' P Z' Zz (or Ty).

Spectral separation considerations to be explained in Ch. V dictate

that a low frequency approximation to (3.10) be available. Such an approxi-

mation was developed by Breakwell and Kurosaki [131 and is shown below.

2
-ks 0 ks 0 -2k s

12 3

,F 0 2k 3  0 -tk 4  0
s[M] (3.11)

1-) -k2s 0 2k 3  0 -6k 4

0 -6k 0 24k 0
4 .1

2k 0 -6k4 0 24k5

whe re

3 1

k i i (2z.Y' (3.12)

1

and

.l- . (3.13)

(. IMPROVEI) IELLER MODEL

In the course of this research it became necessary to improve

Heller's baseline model with the latest gravity data available in an

attempt to shorten the characteristic times of certain low frequency

poles, to be introduced in the next chapter. The process and result

of' this improvement will be discussed here.

-14-



The data used to improve the baseline Heller model (BHM) was the

Goddard Earth Model (GEM) 10 data published by NASA [141. In the GEM 10

studies done by the NASA the earth's potential was described in the stan-

dard spherical harmonic form given below:

U(r, e, (sin )
r (3.14)

X [COM cos ms + Simsin mp]

where the Cim's and Sim's determined from satellite data actually define

GEM 10.

If it is assumed that the gravity model used in an INS is at least

as accurate as GEM 10 then the rms potential coefficient error estimates

for GEM 10 taken from Ref. 14 (p. 55) should equal the rms potential coef-

ficient variation (a- ) of the Heller model. The relation defining the

mean-squared potential coefficient variation for both the spherical and

Heller models is derived in App. B and summarized as

n C +S R i 2 3 (R T{)'-i2 +2

2 2R i)
2 =c+S R4 P 41 )2 iR-D2

(" i = Eh 
(3.15)

By substituting the GEM 10 rms coefficient error estimates in for CLm

and S in (3.15) the PSD of the deepest layer of iHeller's model may

be adjusted so that (3.15) is roughly satisfied at low frequency.

Recalling that the reason for this exercise is to adjust low frequency

pole characteristic times, only 03 need be adjusted as this value has

the largest effect on low frequency behavior while its influence dies out

at high frequency. A satisfactory match was obtained by reducing 3D

by a factor of 10. Figure 111-2 shows the results of this change. Thus

the IhM (improved Heller model) pirameters are the same as those given

in Table 111-1 except that

1.16 X 10 - 3 km6 /sec . (3.16)

3
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.4

o

*~30-

.,4 20 -
4-,
4.-

0 -

1-

, I I I I I I I I I I I
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lDegree (I)

FIG. 111-2 GEM 10 DATA - IIELLER MODEL COMPARISON
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The improved Heller model (IHM) was a necessary development in the

course of this research as explained above. To alleviate any confusion

in deciding which Heller model was used in the comparisons to come,

great care has been taken to clearly mark each case.

Thus far in the discussion all of the power spectral densities have

been based on spatial as opposed to time variation. In the following

chapters, PSDs based on time will be required. The conversion from

spatial to time variation for a carrier vehicle with constant velocity

simply involves the carrier speed as follows

Ds(G) (G) X V . (3.17)

Note also the spatial-to-time frequency variable transformation

t s
- w X V (3.18)

which will be used for consistency in writing various PSI) expressions.

-17-



Chapter IV

APPROXIMATE REAL TIME FILTERS

In this chapter the basic theory for deriving filters for the estima-

tion of INS position and velocity error is presented. Gradiometer outputs.

and in some cases the externally obtained vehicle velocity measurement,

are used as inputs to these filters. Figure IV-1 shows a schematic of the
real time gradiometer application scheme which is simply added on to the

basic navigation loop shown in Fig. II.

Tile scope of this thesis permitted at most two gradiometer measure-

ments in-track or cross-track. The output signal of a single Bell RGG

with its spin axis vertical is

2(ryy rxx ) sin 2ft + Txy

where j is the gravity gradient tensor prior to differencing with the ref-

erence gravity gradient, Q is the gradiometer rotation rate, and t is time.

After demodulation to separate the sine and cosine terms and differencing

the gradient components with the reference values, the following outputs

are obtained

S1 ),

2 yy xx

and

xy

where is the difference gradient.

The navigation axes x and y to which the sensor is aligned are not

necessarily principal axes of the gravity gradient. In the plane of
rotation of the sensor the principal axes are at an angle with respect

to the x and y axes. I a phase angle is introduced in the equation

indicated by this footnote it would indicate the orientation of the
principal axes when the cross-gradient component is zero. Thus the
gradient can also be represented by an angle and the maximum difference

(ryy- rxx) in the plane of rotation.

* The outputs obtainable rrom a single spherical gradiometer manu|factured
by the Draper L,. ire fli'lIereti ill form rrom Ihose o1' the liil ItGG.
It is an easy matLte', however, to :liln tile anl ysis given in Lits

thesis to accommodate the l)raper gradiometer. An overview or the
operation and outputs of the spherical gradiometer is given by Trageserr151.

t -l9-
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A cyclic permutation of these subscripts gives the outputs for instrtiments

with spin axes aligned in-track and cross-track respectively. Recall

from Ch. III that only the cross-gradients P and r can be used asxy yz

measurements cross-track and only the in-line gradients (pxx' , ' , Pz )

and rxZ can be used as measurements in-track. Thus to obtain two gradi-

ometer measurements cross-track, two instruments are required with spin

axes in-track and vertical. The in-line gradient combinations from these

same two instruments are used for in-track estimation. This allows for a

full evaluation of how two gradiometers can improve horizontal navigation.

The best choice for a single cross-track measurement is P because it
xy

is more highly correlated with g than is P . For consistency the in-
y yz

line output of this same gradiometer is used as a single in-track measure-

ment.

Table IV-I lists each of the measurement combifttions used.

rable IV-1

CROSS-TRACK AND IN-TRACK MEASUREMENT COMBINATIONS

Measurement Di ffercnce
Combination Gradient

Code Componcn ts

CT-1 (riy

CT-2
r

IT-i

IT-" trxx .:T',/,

IT-3 : :

4~ r
I " XX ,7

1 ..- 21-



The significance of each is given below.

CT-1. This combination corresponds to using the cross-gra4tont out-

put of one 1ell rotating gravity gradiometer (W) with its spin

axis mounted vertically. Because this tensor component is the

in-track spatial derivative of the cross-track deflection

it is the tensor component most highly correlated with gY'

CT-2. To obtain this set of measurements two RIGGs are required.

the spin axes of these instruments point vertically and in-

track respectively. The improvement over the CT-1 combina-

tion is small.

IT-1. Because the in-line gradients come from the Bell RGG linearly

combined (e.g., for spin axis vertical !('r - ry)), Tx
2xx yy xx'

the most highly correlated component with g is not directly
x

obtainable. However, for comparison purposes this fictitious

case of a direct rxx measurement is included.

IT-2. This case illustrates the situation where the direct in-line

composite output (modified by Laplace's equation) of one

vertical RGG is used as a meas4rement. This is inferior

to the IT-1 case.

IT-3. In this situation the direct composite outputs of two RGGs

are used where the instrument spin axes are vertical and in-

track. This combination is comparable in information to the

IT-1 case.

A. VELOCITY ERROR ESTIATIOlN THEORY

A-1 Excluding the External Velocity Measurement

To obtain the measutremIent combinations .Just discusspd the basic

diflference gradient vector required is

-22-



l'xx

xy-- : (4.1)

xz
P
yz

The measurements may then be written as

ml m5 5 X1 ml

z + E +e (4.2)

where £ is the white measurement noise vector.

Let the estimated velocity error be

lXm mXl

6V (S) = *(s) z = q(s)[1I ,-] . (43)

where *(s) is the velocity error filter expressed in the Laplace domain.

This vector requires only these five components because any single
channel output of a Bell RGG with axes oriented along the x, y, z
directions can be reproduced with these elements and the proper If
matrix. If all the elements of the gravity perturbation tensor are
required three orthogonal IRGGs are required. These instruments must
be mounted so that a signi[icant component oF gravity is perpendicular

to the spin axis of each instruoment. This is necessary For proper
operation of the scale factor calibration loops.



Note here that (4.3) is written with subscript x indicating the in-

track direction. Because the basic INS error equations have the same

form TTorCT the velocity error estimation equations will be written IT

but are immediately applicable CT simply by changing the x subscripts

to y. Taking the Laplace transform of (2.5) and (2.7) and solving for

Fv gives

sg skFVm

FV (s) - + X (4.4)
x ( (+)

whe re
2 2

(+) s + ks 2 W (4.5)
S

is called the positive Schuler factor and conversely, (-) will be used

2 2
to denote the negative Schuler factor (s2 - ks + w ). Subtracting (4.4)

s

from (4.3) the estimate error is

sgx  sk6 m

6" 1s) = 1(s)H1+ *(s)- - " (4.6)

The PSD of 61V (s) is then
x

Xt ( )s 2

t -(s) = v(-s)H+ t (s)H TT (s) + *(-s)RT (s) . gX

wr Vx e f(+) () (4.7)

(-)' t o (s) 0 t T(s)H T *T(s)

k k~2 11 gx .g

s ((77.-))s (+)

-24-)

where It is the PSI) matrix of the white noise measurement error vector

Q ). The object of' this exercise is to minimize t1- mean-squared estima-

tion error which may be expressed as

2 1 t
-) [ " (s) ds (4 8)

O Vx 2l.o.. o , x""

i -24-



For to be a minimum its variation due to any change in jr(s)

should be positive. Substituting (4.7) into (4.8) and determining the

change in (7 2 due to a change in *(s) gives

x H':, g (s)s

Aa2Y1  j L AV(-S[H) t  (s)IIT + -T(s5Vx 2j . 0 -1c (I )- -)7

s _Tx A4T ()

+ Lr(-S) [HI ,T s)HT + ds (4.9)

Using contour instead of line integrals to evaluate the first two

terms in (4.9) yields

114g (s)s
2 1 - g

A*(-s)[H, t(s)HT AR]T(s) dsx 2 ,j sF , 7-'1

+ ~L ~2(~ t T R~I ju T~ s ds

+ 1j . *( -sfH(P ( s)HT+ - (-) f ,~ ) d

+ -LW S H (s)H T I+ A R T )

2 a j i I T d s4 . 0

where the contours C and C 2  are illustrated in Fig. IV-2 and enclose

the left and right half complex plane respectively. With these con-

tours it is easy to see, using the Cauchy residue theorem, that if

1) Tg (sTs
x

1)[q ( R T(s (+) (4.11)

has no left-hll' plane poles;

2) The integrands in (4.10) converge properly. (4.12)

-25-
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Then the contributions of the contour integrals in (4.10) is zero.
2

This means that AoV is positive since the last integral in (4.10)
2 

is always positive ang the minimization of aV x  is assured.

Note from (4.11) that the poles of jr(s) must he determined either

by setting (+) 0 or by setting

I H1,t - (s)H I R = 0

Because of the inherent sensitivity of the INS to Schuler frequency

disturbances it will be assumed that the dominant poles come froi the

Schuler factor (+). In addition, convergence in (4.12) requires that the

numerator of *(s) be a well selected constant(s). Therefore assume

1 X111
lXm
(s(+) (4.13)

As promised r(s) is of relatively low order. The approximate nature of

*'(s) comes from the "Schuler dominance" assumption which is made to de-

termine a. The idea is that due to INS Schuler sensitivity only the

Schuler frequency portion of the estimate error P3I, is significant in2

contributing to (yZ . This is to say that the estimate error PSI) isF vx
highly peaked at or near Schuler frequency. With this assumption condition

(4.11) is enforced only at s Jw t  to give

-T r'T )T (4.14)
a = j[JI(H w) + R HM7 Ow

I gx s

One way to indirectly show the optim:'lity of [ I.' Meir just dc-

rived is to prove the accuracy of the Schuler dominance assumption.

This may be done by substituting (4.13) and (4.7) into (4.9) where theNI

quadrature is performed numerically to give the ms estimate error Cr NI

This value can then be compared to the analytically derived 1ms estimate

AF
error e V x obtained by assuming Sehuler (lominalce. The degree to~Vx

NI AF"
which VN  agrees with rr Vx is a direct indication of the validity

-27-
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of assuming Schuler dominance and an indirect indicator of filter optimality.
AF

To derive oy- begin by writing only those parts of (4.7) which will

have left-half plane poles if condition (4.11) is assumed satisfied across

the frequency spectrtm. Substituting (4.13) into he estimate error PSD

thus obtained makes it possible to write the mean squared estimation

error as

s,,t s)H TaT

2 1 'Lg(s)s s k q1 xTT
2. _ t - k+(2 + ds * (4.15)

The integral in (4.15) may easily be evaluated using the Cauchy residue

theorem if the Schuler portion of the estimate error spectrum is again

assumed to be dominant. Under this premise and substituting (4.14)

into (4.15) the mean squared estimate error becomes

C 2 2 2
2 1 1 lW + W q 2- = - , ds (4.16)x (+) (-)

where 13 is the a posteriori gravity error spectrum defined as

t ( ,ii s '} t " I ) ) 1 T l, . j 
t ( )IT + R HJg ) (4 .17)

9 x TT .i() S if f SI H x j S) (4.17)

Then the C,:lhy residue evaluation of (4.16) yields

2 It kq2
-- x - - (4.18)

x



A-2 Including the External Velocity Measurement

Using the combination

Vc - - Im (sR - Vm) (4.19)
x x x x X x

as a measurement,

lxm nD<lI
)V = (s) z +t (s)(S;, - Vm )  

(4.20)X x x

The estimate error is then

(S) = ,(s)HT' + ,(s)C - ,(s - [l-,-,(s)-,(s) ,Vm  (4.21)

where

*(s) = '(s) - 1 (4.22)

It follows from (4.21) that

t: [,(-s);c(-s)], [w] + (+:)-)

' S~ x

1 IL q2
1 

(f(4.23)

where [W11 is the estimate error characteristic matrix defined as follows

,!TT (s)t + R) (s)s/-
T Pgx

[Wl] (4.24)

(x) x-)
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From Section A-i recall that the coefficient of [%It(-s); 0(-S)j in

(.1.23) m'ust have no lcft-half plane poles if or:: is to be a minimum.
rvx

For this to Ix, t rtic the denominjators of' j,(s ) and 'I (s) miust be the left-

half plane roots which result from setting the determinant of [W1 ]

equal to zero. Anticipate that the product of these roots results in a

second degree polynomial of the form

W+) s2 + k's -w2 (.5

where k' is a shifted value of k used in the filter. To determine

the value of' k' the dletermninant of (4.24) is set equal to zero

t.he reg ion where

S 2 4k's +w 2= 0 (4.26)
s

S 24. W z -k Is .(4.27)

For the determinant of [W I1 to equal zero in the Schuler frequency region

the following condition must hold

s2 1-G.22q ) 2 H ,t )[+t )H T -R3l

x 4 ti ()HI T u):2+:O (4.28)

where (4.28) is obtained from reference to the identity

-2 - -1 2 1

LQQ- l]Q?~ Q ][ - T l J(4.29)
2 1 2 3- %2 12
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where QI' Q 2 Q3 represent the corresponding quantities in [W l].

It is clear that if the determinant of (4.29) is equal to 'ero then

T -
Q QT~ (4Q0

3 21 Q2 (4.0)

Substituting (4.27) into (4.28) yields the following valuc l'or k'

2 11
k' - (4.31)q 2

Continuing with the filter derlivations, for the coefficient of'

[*(-s); 0(s)] in (4.23) to have no left-lalf plane poles, the ()

factors in the second column of [WI must be cancelled by the numerator

of b(s). Therefore assume

(+) (4.32)

(+')

Substituting (4.32) into (4.21) gives

6V 4(s) + (s)i- xX (4.33)
S(+,) +)

which is identical to (4.6) except that k' is substituted for k. From

this point on the analysis is the same as in Sect. A-1 resulting in the

following equations

lXm 
lXm

a

(s) = a - (4.34)

77

-T rf t _( ',,) r 1
ja T js )H + R H0 , (ji) (4.35)g1 T S

and
IXs (k - ks
V(s) (+ (4.36)

--31-
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The analytic and numerically integrated estimate error expressions

are also the same as those in Sect. A-1 except for the change in k. The

analytic expression may be written

((TAV 2 B ktq 2- 2k+ 2 - 4 (4.37)

Note that this is ::hes:me ;( ) without the external velocity meas-

urement provided that k is optimized for the mean squared estimation

error.

B. POSITION ERROR ESTIMATION THEORY

In contrast to velocity error estimation, position error estimation

requires that the low frequency, as well as the Schuler frequency, por-

tion of the estimate error spectrum he considered. This is a consequence

of two facts. First the high frequency content of the spatial gravity

perturbation spectrum ralls off quite rapidly. This is described in the

Heller model as an exponential decay. This results in the error contri-

bution from the narrow bandwidth centered at Schuler frequency beconing

ever smaller, for decreasing carrier vehicle velocity, when compared to

the low frequency spectral content. The second significant observation

is that the gravity perturbation spectrum just described is integrated

only once to give velocity error but it is integrated twice in the posi-

tion case. The low frequency error contribution is therefore much more

important to position error estimation. This fact is reflected in the

following assumed form for the gradiometer measurement position error

filters.

*s(s) = *s(s) + (s) (4.38)

whcre thv s and C indicate Schuler and low frequency portions of the

filler. Tih,( transf'.r functions (s) and rI(s) may always be deter-

mined indepewaently of one another if certain logical assumptions are

made. These assumptions, to be discussed in the next section, concern

the relative size at low frequency of terms contributing to the estimate

error.
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B-1 Schuler Frequency Filters (In-track or Cross-Track)

As with velocity error estimation, the Schuler portion of* the posi-

tion estimation equations will be written in-track but are immediately

applicable cross-track by changing the x subscripts to y. ro estimate

position error, first without the external velocity measurement, begirt

as in the velocity case with

f:irp + e.(4. 39)

and

F',((s) i: (s)z . (4.40)
x

The estimate error and estimate error power spectral density can be

written as

g k Vm

IR (s) = r(s)HP + x(s) - x (4.41)
x (4) (4)

and ()FH~t T(())g

t T T x'R (s) = ,(-s) rHT (s)H + rTlIV (s) +
-T (4) (-) (4.42)

2  4(_s)1H0g (s) t _T(b)H r (s)
kq2 gx

( ) (-)

Following the same reasoning as in velocity error estimation, to

2
minimize (T-

FrR

[HO t (,)!,'r  4 Itr(s) (4.43)TF T
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must have no left-half plane poles. Focusing attention now on Schuler

frequency by assuming that .j(W) is very small compared to S, (jW )
(.1. 13) 11,1 x. rewritItenl as

I11D- (s)rg
[HI(P (s)H T~ +itl (s) (4.44)-T

The position error estimation equivalent of (4.12) dictates that the

numerator of 1r (s) be at most linear. Therefore a first-order factor

is used in the numerator of ij(s) while the same Schuler factor is

used in the denominator to yield

LXm lxm

S(s) *s -+ C (4.45)

Substituting (4.45) into (4.44) and assuring no left-half plane

poles at the roots of (4) gives

2 r

From (4.46) both band c can be found.

The mean-squared estimation error comparisons are accomplished using

the basic formula

NIThn TF-l is r'oud by stibstituttug (4.45) and the as yet undetermined

Alf(s) into (41. :38). Now the~ complete )r(s) is used in (4.42) so that
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the quadrature in (4.47) may be numerically evaluated. There are two

distinct parts to the analytic f'ormula ['or rms position estimation error.

one from the Schuler frequency disturbances and one from the low fre-

quency disturbances expressible as

AF AV AFa- (O ) 4 (0-.
.~ (4.48)

These are found from substituting ii (s) into that portion or' (4.42)

that has left-half plane poles, after (4.43) is satisfied. Using (4.42)

modified in this manner as the integrand in (4.47)

t 2 t (s)HTT (s)

2 1 (s) kq 2  T s

0- -- 4 _ _- ( ds

x(-) t rT

Cs)T ! (s) (4.49)

S x
-- 0 ds2jI J (-)

where the first integral represents

(0AF 2(A )2
x

and the second

(A" 2(o,1 ) > (-2ajr).
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inUsinv (4.45) in the (auchy residuie evaluantion of' the first integral

i(4.49) gives

AF 2 B kq 2
x s 2kw 2w

(oAF 2 2 2 (.0

where this expression is equal to (ap ) in (4.18) divided by w . This
vx 5

is a standard form for the Schuler mean-squared estimation error. The

formi for the low frequency counterpart to this quantity, however, has

no such standard form but varies with the number and location of low
AF

frequency poles. F'or this reason the quantity (n- ) will be derived

on an individual basis for the measurement combinations specified in

Table IV-l.

The external velocity measurement may be included as a measurement

by writing P)R as9
x

*r(s)z + *'(s)(sF)R - FjV ) (4.51)

which gives an estimate error equation of the form

- -~ s~ x _____ -- i' w (.2

(4) - (W)

where

t'() I ss- 1 (4.53)

Writing the estimate error power spectral density for the position error

in thp same matrix format as was used in (4.2 )yields
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= i* ~ W a (.(S) (4.() (4.54)

where

H t (s)
t T f9gH (s)IIT +R x

[w2] (4.55)
tT

D (T)IIT tpI t (s) 2 2 2gr' (s-t,)

x X
q 2

S(- (4) (-)

Reasoning identical to that used in Sect. A-2 yields the following Schuler

frequency form for r(s):

(W)

€()) = -(4.5 ')

Notice that the low frequency behavior of (4.56) gives

- (4.5: )
( small s

This results in highly desirable behavior because it minimizes the con-

tribution of the 1 + t!(s)/s term in (4.52). This term, for small s

and t(s) - 1, might be very large even for reasonable levels or

external velocity measurement noise. Therefore it will be assumed that the

nVm/s term in (4.52) is large at low frequency making t(s) - -
x

an ideal choice at both low and Schuler frequency.

Substittuting this valise or ,(s) into (4.52) yields

4 ifS - X x
((s)1P ,(s) (,,) (4') (4.58)
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which Is identical to (4.41) except that k is replaced with k'.

There fore

n (s)
(W')

where b and c are determined from the condition

VH~tT + R (-T., + cT -l k'

--T S0

"the estimate error PSD is expressible as

't1 (s) 2
t T T 1_____ ___q_2-{(s) : r(-s)[H~t -(s)llT + Il-r ('.; + (+_____ ( q2

(4.60)

I (-s)Ht (s) Ot T(s)HT T(s

x gx

where

2 - k's + 2 (4.61)

AF NI
and and Atx are determined as previously explained except that

again k0 is used in place of k. The resulting Cauchy residue eval-

AFuation of (Q"a-, ) gives

x

(AF )2 B 2 F (4.62)

x 2k ' . 2 W

AF 2
where gain this expression is related to (0,7) in (4.37) by the

2 x
factor 2 x
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In the next two sections the various forms for jr (s) lor the

cross-track and in-track directions will be found. these filter forms

will be constant whether or not the external velocity measurement is

used as a measurement. This is a direct result of choosing t(s) as

in (4.56) which gives

!f(s)na - 0 (4.63)
small s

Simply stated the external velocity measurement is assumed to add very

little low frequency information and therefore does not change the low

frequency part of the gradiometer measurement filters.

B-2 Low Frequency Filters, Cross-Track

The reason for the low frequency filter variation from cross-track

to in-track is solely a manifestation of the assumed low frequency

forms for 4 (s) and 4 (s) from the Heller model. The low frequencyigx gy

PSD (power spectral density) matrix in (3.11) transformed to a time

variation is

-k s 0 k s 0 -2k s
C C

0 2k 3  0 -6k 4  0
3]

t [LF C 2 kC B (4.64)
1-I) = 2 3 4

B A
0 -6k 0 24k 5  045

B B A
2k 0) -6k 0 24ks3 45

A B C
where kA, kB, and k art low frequency time spectral density coeffi-

cients defined as

t-3"9-

*mom
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k
k (4.65)

.1 V(u -.I)
Vx

k

k. B - (4.66),J v(5-.)
x

k. - (4.67)
4 v j)

x

and(

s j(468)
x

Fro,, (4.64), J (s) and 1 s) are of degree two and zeros respectively.
9x X Y

This dilference ultimately produces low frequency filters of orders two

and one. This means that the results from this and the next section are

applicable to any other gravity perturbation model whose low frequency

behavior for 4 (s) and 4' (s) matches that given in (4.64).g g
x y

The cross-track low frequency filter derivation begins by writing

(4.43) for small s. Then

IIcD t (s)

F[_lDt ,f(S)I C T (S) - gy (4,69)
rp (,'2

s small s

must have no left-hall' plane poles. To satisfy (4.69) it is immediately

T
clear that the denominator of @j(s) must be the left-half plane roots

of

I0, _ _,r (S) I ' i -- 0 . (4.70)
ff small s

In the cross-track direction this results in a single real root annotated

s - (4.71)
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To assure that the low frequency peak in the estimate error spect rum

dies out at the upper end of the low frequency range, the niuterator of

nf(s) must again be a well chosen constant(s). This is equivalctit to

satisfying the position error est*.mation equivalent of the couvergvnce

condition in (4.12), at low frequency, Therefore It (s) has the form

1 )on

(Ys) (4.72)

To find ax note that (4.69) must not only be without left-half plane

poles but to assure convergence

-Ts)Tn CY, 1 -
[o - 0 (4.73)

-- s - 2 rg

s 'large s"

where the quotes indicate "large s" in the low frequency range. Note

also that (4.73) is applied only to the higher powers of s. It may be

t 2 t
assumed that t (s) has a dominant s term and that 4s- (s) has

a dominant s term when estimating position error cross-track. To

reduce (4.73) to one nontrivial equation using these facts, write

It ts It (S

ILT (s P _ 
(4.74)

Pp 2

tt
0- (S) s (s) (4.75)

Pg yPg y

where the primes indicate differentiation with respect to s. Note that

(4.74) and (4.75) only hold for the highest powers of s. Substituting

(4.74) and (4.75) into (4.73) yields
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Ij --t (s)II r  -T I L (4.76)
P2 Y 1

s "large

From (4.76) on,, component of 5 ntay be found. The other components may

be found by enforcing (4.69) at the low frequenc) pole. This relation-

ship is

D _ S 11 + 0o. (4.77)

AF
Recall that to calculate (CYA ) this last integral in (4.49) must be

x

evaluated. Using the Cauchy residue theorem to perform this quadrature

AFgives no standardized form as was the case for (a4- )S, primarily be-

x
caluse D ( s )  is a rutaction o( s at low frequency. Because of thisg

and the nontrivial nature of the low frequency filter constant determin-

ations, detailed derivations for the in-track and cross-track low fre-

quency filter constants are given in App. C. These derivations apply

to measurement combinations listed in Table IV-l and include the result-

ing detailed formulas for ((T)AF

x
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B-3 Low Frequency Filters, in-Track

The denominators of the in-track filters are again round I'rom (4.70).

For the assumed second degree form of 4 (s), however, the left-half

x

plane roots, after some approximations explained in App. C, turn out

to be a complex conjugate pair expressed as the factor (.e+). The exact

location of these poles vary with the exact measurement combination used

and are given in App. C. The low frequency filters can be written as

XIim lxm

i, (s) ds + e (4.78)
(2,+)

where the first-order numerator satisfies convergence at low frequency

while ensuring sufficient estimation accuracy. The convergence and low

frequency pole conditions (Sect. B-2) are used to find d and e. These

conditions are stated below for the in-track direction

-T -T
T s+ e 1 t

[H@T (s)HT H- (s) = 0, (4.79)-- 2 9'g its
(IT) x large

and

[Ht (s)IT + RI (d1 -T)e
[H - T S 4 eTIs-roots 0 (4.80)

PP of (1+)

The details of finding d and e are again peculiar to the particular

measurement combination considered.

C. LOW FREQUENCY FIITE ItRESUTS

The results from the low I'rguency filter e, rivat ions in App. C

are given in 'Tables IV-2 aid TV-:i.

41
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Table IV-2
LOW FREQUENCY FILTER RESULTS

(CROSS-TRACK MEASUREMENT COMBINATIONS)

CROSS-TRACK 1 CROSS-TRACK 2

*1.

[t

xy X

H [o 10 o o] [0 1 0 0 0]

0 0

0rr0 01 0

I i I  I

i [o r2 J:

A
S(r + 24k 5 )

3 (48k3 k 5 36(k ) + 2k3r2

SV V x 6ke Vx
xx

4 ,2

B 2kB +kB
2k F 31yf 402

22

These a astercmeitt combinations assume the state vector defined
in (4.1)
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rale iV-:
LOW FRFQU].WCY FILTER RESULTS

(IN-TRACK MEASUREMENT COMBINATIONS)

IN-TRACK 1 IN-TRACK 2 IN-TRACK "4

r 4r
z : (Txx Tx 2 + T,

2 xx zz.

1 [0100

0 A
51

(30k A4 r )I

I4V 2v\

3i

2 2
2 2 24o 2v)

2231 A2 A "L)

S S

e 22k 2 2 2 3W.
-Bd .32 2 1 (F,2) 2

AF 2 2kle B 2[ 2 2 _ 2) 2 A2 A.)Rx] 0o2L 4 klep 2F 1 4 (FI - ,F I

3 3

These measurement combinations -ssimic Lhe staLe vector del'ind in (4.1)
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I Note that. to obtanin the total analytic position error variance

formiula for any or the combinat ions in these tables (4.50) or (4.62)

should be added to the appropriate formula for (a!.
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Chapter V

REAL TIME FILTER COVARIANCE STUDY

A. COVARIANCE COMPARISONS OF KALMAN VS APPROXIMATE
FILTERS FOR THE CROSS-TRACK DIRECTION

In this section the second-order gravity model is used in a standard

Kalman covariance analysis. A comparison is then made with tile covari-

ance results obtained from the previously derived approximate iilters.

The cross-track direction is chosen because the low frequency behavior

t
of the second-order model is similar to that of the leller model ( (s)g
The cross-track gravity perturbation power spectral density from Y

the second-order model is

t (s) -
gy s2 2)2 (5.1)
9y (s 2- P)

From this rational expression it follows that

t ( -s x ( 2  (5.2)
x ( - f32)2

2
,, (s) x (2 - 2) (5.3)

xy xy V s -s -)

The Kalman state space representation is obtained by combining (.(),

(2.8) and (3.3) as follows:
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X F X G

-t 3  0 0 0 x 1 0

1 - 0 0 gy 0 0

2 5V
V 0 -k -w ] 0 k

y s y

011 0 0 1 0IR O o (5.4)

.. y,. Y.j

whe re

X - state vector

F state transition matrix

G process noise transition matrix

W process noise vector

The measurement is assumed to be

z IH X C

z L1 -f3 o o] x1  + TlVx

(5.5)

y

6n
y

where TI is the gradiometer error. II' the external velocity measurement

is included

_ -, 0 x"qV x

y) y (5.6)

yOV

yYj

The first measurement, here, Is obviously which can be written
* t y
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gy = Pxvx (5.7)

which comes from the following identity

V [ ] V (5.8)y | xy "/.(x.

yz

Comparison of the measurement noise in (5.6) and the process noise in

(5.4) shows that the two are correlated. The standard Kalman filter

covariance analysis can still be made by deriving an equivalent system

described by Bryson and Ho [Ref. 16, pp. 371 and 402-4041 where the

process and measurement noises are not correlated. The general form

for the equivalent system is

X = F'X + GI'w + Dz (5.9)

where

D = GT TR 1 (so that the noise in (5.9) is uncorrelated with C)

(5.10)

F1 f F -DH (5.11)

G = -D (5.12)

TSt-T)=]Et)w() (5.14)

The specific form for these equations using the unaltered measurements

given in (5.6) is
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0q

0F 0 0 0

0 ke 0

F' 0 0 -1 0
= (5.17)
0 [ (5.16)

q2"

~f o o 0

1 0 0 0

F' 0 1 0 -0 (5.1)

0 0 1 0j

1 0 0 0

o k 0 -k

O 0 0 0

WI

rVx (5.19)

T~x

y
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Equation (5.7) shows that using P as a measurement is equivalentxy

to the use of t Y. This means that the covariance results obtained by

slightly modifying the CT-I formulas in Chapter IV can be compared

with the covariance results from the foregoing Kalman configuration.

Because the low frequency behavior of 0 (s) is different for the
g

second-order model (SOM) and Heller modely (JIM) as follows:

t HM  C
D (s) = 2k (5.20)

y! small s

tSOM q (

y smel s

the low frequency root from (4.70) is

= (Vf1 ) (5.22)

The value of O found by substituting (5.2) and (5.3) into (4.76) is

V
= --! (5.23)

2

The analytic low frequency variance formula is altered to give

/A 2 ql ( f
( 

(5. 24U Ry)L V (,,

x s

The previous results for the determination of a, b, and c remain unalt-

ered as do the variance formulas except that the spectra in (5.1), (5.2).
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and (5.3) are used in place of those from the Heller model.

Tiere are primarily three questions to be answered concerning the

real time approximate filters: (1) How optimal are the approximate

filters? (2) Over what range of carrier vehicle velocities can these

filters be used? (3) What measurement combination produces the most

accurate estimates of position and velocity error? Tables V-1 through

V-4 seek to answer the first two questions by comparing the Kalman filter

rms estimate errors with these same quantities resulting from use of

the approximate filters. The assumed second-order model and inertial

navigation system quantitative characteristics, taken from Heller [101

arc as follows:

6V 0.2 percent of V - band limited white noise with
Y x (5.25)

a two second correlation time.

ff 2 1.4466 x 10 2/sec 4  
(5.26)

gy

k 7.5 x 10- 5  l/sec (5.27)

Because the Bell and Draper gradiometers are accurate to approximately

1 E*6tvos, this would seem a realistic value to use and, in fact, all of

the results in this research assume a gradiometer with this accuracy.

In addition, tile gradiometer is assumed to have a 10 sec averaging time.

This determines the g- adtometer measurement error power spectral density

necessary for computation of the Kalman filter.

Looking at Tables V-1 to V-4 the most important results appear in

the rms estimate error columns. As explained earlier the dominance

assumptions made in the filter derivations may be directly checked (which

indirectly checks optimality) by comparing the analytically and numerically

obtained rms estimate error values. The last two columns of each Table

contain these numbers. A comparison of these values shows that nowhere

do they differ by more than 6% and routinely differ by less than 1%.

A direct check of optimality may be done by comparing the Kalman filter

estimate error results in column 2 with the numerically integrated values

in the last column. The fact that these values also agree to at least 6%
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and routinely to less than 1% provides direct confirmation of approximate

filter optimality.

Although the data in these Tables look very promising it must be

remembered that a rational second-order model was used. The primary

purpose of Tables V-i through V-4 is to show that confirmation of the

dominance assumptions made in the approximate filter derivation coincides

with a near optimal filter. From this point on then, confirmation of

these dominance assumptions will be considered sufficient proof of near

optimality since direct Kalman comparisons are impossible when the Heller

Model is used in the next section.

Table V-1

VELCITY ESTIMATION COVARIANCE
COMPARISON (E/EVM)** KALMAN VS APPROXJJATE

KF = Kalman Filter, AF Analytic Formula, NI = Nsmerically Integrated

Kalumn
Carrier Filter Approximate Filter Results

Velocity Results

(0/8ec) AY

y y
(mm/see) (r/see) (mE/see) (mn/sec)

0.$144 0.1079 0.514 0.1079 0.1066

5.144 1.079 5.14 1.079 1.076

51.44 10.79 51.4 10.78 10.77

514.4 103.38 472.4 103.43 103.16

Excluding the external velocity measurement (EVM)

Table V-2

VE'LOCITY ERROR ESTIMATION COVARIANCE
COIpARISON (I/EVM)*: KAIAN VS APPROXWIATE

Kalman Approximate Filter Results
Carrier Filter
Velocity Results

/sec) 6Sv(mm/se) a
y (M/see) (1/sec) (6/sc) (eiee)

0.5144 0.0511 0.514 6.376
- 4  

0.0319 0.0443

5.144 0.5118 5.14 6.376
% -4  

0.5196 0.4807

51.44 5.118 51.4 6.376
% -  

5.196 4.88

514.4 50.06 472.4 6.11 50.86 47.71 _

II/EVU ,,clu, ing the external velocity measurement
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Table V-3

POSITION ERROR ESTIMATION COVARIANCE

COMPARISON (E/EVM): KALMAN VS APPROXIMATE

KF = Kalman Filter, AF = Analytic Formula, NI = Numerically Integrated

Kalman
Carrier Filter Approximate Filter Results

Velocity Results - - - AF NI

.v(m,-sec) (m) (m-sec) (m) (m)

0.5144 9.79 -3.35 \ 5  -2.51 \ 1  3.35\5 9.79 9.79

5.144 17.4 -3.35\6 -2.51\2 3.35\6 17.44 17.43

51.44 :32.04 -3.35 \ 7  -2.51 \ 3  3.35\7 32.17 32.11

514.4 96.95 03.074\8 -2.12 \ 4  3.35\ 8  99.87 97.82

Table V-4

POSITION ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVM): KALMAN VS APPROXIMATE

Carrier Kalman Approximate Filter Results

Velocity FilterI

Ies.ultS - - AF NI
KI)i C kv I

(m/sec) aI (m-sec) (m-see) (1/sec) Y Y

(in) (in) (in) (mn)

0.5144 9.23 -2.646 \ 5  -1.68\2 2.646\ 5 6.376,- 4 9.238 9.231

5.144 16.41 -2.646\6 -1.687 \ 3 2.646\6 6.376\ - 4 16.43 16.42

51.44 29.31 -2. 646 \ 7 -1.687 \  2.646 7 6.376 29.45 29.39

514.4 59.98 -2.476 -1.389 2.646\8 F.11 -  C3.47 61.61
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B. SINGLE GRADIOMETER MEASUREMENT ANALYTIC

VS NUMERICAL COVARIANCE COMPARISONS

The next step in proving the accuracy of the approximate filters is

to show their near optimality when the more realistic Heller model is used.

This is done by making the same type of comparisons as in Sect. A but with

the following changes: (1) The Kalman covariance is excluded; (2) Tie

exact formulas for Ch. IV are used. (3) The IT-1 measurement combination

is included. The impetus to improve the Heller model came from studies

done in this section. Therefore all the comparisons in Tables V-5 to

V-12 were done assuming the BHM (Baseline Heller Model). In addition

these data also assume the EVM (external velocity measurement) noise and

the value of k as defined in Sect. A.

The primary focus in Tables V-5 through V-12 is the agreement of the

rms estimate error values in the last two columns of each Table. As with

the preceding Tables in this Chapter these numbers agree to within 6%

for both velocity and position error, with the exception of the lowest

velocity case, in all of the velocity error Tables. This is due to the

fact that the low frequency portion, as assumed, of the estimate error

power spectral density (PSD) is dominant. The exponential decrease in

the Heller gravity perturbation spectrum results in very small gravity

perturbation PSD values at the short spatial wavelengths corresponding

to Schuler frequency at low speed which in turn causes the low frequency

dominance. In order for the velocity filters to be meaningful at low

velocities some form of low frequency compensation would have to be in-

cluded.

By comparing the data which includes and excludes the external vel-

ocity measurement, it is possible to determine the impact of using this

potential data source. The rms estimate error values in fable V-7 vs

Table V-8 and Table V-11 vs Table V-12 show that the external velocity

measurement contributes little to enhance position error estimation.

Conversely Table V-5 vs Table V-6 and Table V-9 vs Table V-10 demonstrate

that an average increase in accuracy of 50% is possible for velocity

error estimation.
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"rnble V-5

IN-TRACK VELOCITY ERROR ESTIMATION COVARIANCE

COMPARISON (E/EVM): ANALYTIC VS NUMERICAL

AF = Analytic Formula, NI Numerically Integrated

Carrier Velocity _ AF NI

a CN a(aNx x

(m/sec) (m/sec) (mm/sec) (mm/sec)

0.5144 1.985\21 0.0126 7.098

5.144 5.144 1.078 1.078

51.44 51.43 10.78 10.78

514.4 470.0 103.16 102.89

Table V-6

IN-TRACK VELOCITY ERROR ESTIMATION COVARIANCE

COMPARISON (I/EVM): ANALYTIC VS NUMERICAL

Carrier AF NI

Velocity a kV v

(m/pec) (m/sec) (1/sec) (mm/sec) (mm/sec)

0.5144 1.985\ - 2 1  3.96 - 14 4.1 \ - 7  7.098

5.144 5.144 6.376\ - 4  0.5196 0.493

51.44 51.43 6.376\ - 4  5.195 4.93

514.4 470.0 6.095 - 4  50.8 47.f2
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'Fable V-9

CROSS-TRACK VELOCITY ERROR ESTIMATION COVARIANCE
COMPARISON (E/EVM): ANALYTIC VS NUMERICAL

Carrier AF NI
Velocity a S &V

y y
(m/sec) (m/sec) (mm/sec) (mm/sec)

0.5144 2.257\ - 23 0.0126 4.088

5.144 5.143 1.079 1.077

51.44 5.142\1  10.78 10.77

514.4 4.926\2 105.58 105.53

Table V-10

CROSS-TRACK VELOCITY ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVM): ANALYTIC VS NUMERICAL

Carrier AF NI
Velocity a k' V CTV

y y
(m/sec) (r/sec) (1/sec) (mm/sec) (mm/sec)

0.5144 2.575\- 23 4.51\ -15 1.382\- 7  4.089

5.144 5.143 6.376\ - 4  0.519 0.493

51.44 5.142\1 6.376\ -  5.195 4.965

514.4 4.926\2 6.24\ - 4  51.39 50.98
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The IHM (improved leller Model) was developed after noting the

excessively long characteristic settling times associated with the low

frequency filter poles for some of the cases studied in this section.

To best see this problem, Table V-13 catalogs these settling times for

the CT-1 and IT-1 (cross-track and in-track) measurement combinations,

Table 13

LOW FREQUENCY POLE CIHARlACTERISTIC SETTLING TIMES FOR THE BHM*

Carrier CT-1 IT-1
Velocity Settling Time (days) Settling Time (days)

(m/s) 1/)(I/L)

0.5144 1647 176.9

5.144 52.1 9.95

51.44 1.647 0.56

514.4 0.052 0.0315

BHM = Baseline Ileller Model

Note the settling time of 1.647 days even at 51.44 m/sec.

The most desirable way to deal with this problem is to update the

low frequency knowledge of the gravity field thus reducing the low fre-

quency residual in the Heller gravity perturbation model. This is pre-

cisely what was done in Ch. II to obtain the IHM. T'ie updated character-

istic times for the IHM are shown, along with the values for the BHM in

Table V-14.
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Table V-14

LOW FREQUENCY POLE CHARACTERISTIC SETTLING TIMES FOR THE IHM

Carrier CT-i IT-1
Velocity

Settling Time (days) Settling Time (days)

(m/sec)

0.5144 1157.74 (1647) 106.995 (176.9)

5.144 36.612 (52.1) 6.017 (9.95)

51.44 1.158 (1.647) 0.338 (0.56)

514.4 0.037 (0.052) 0.019 (0.0315)

* numbers in parentheses indicate BHM values

There is some improvement shown in Table V-14 but in the low velocity

cases the times are still inordinately long.

C. LOW FREQUENCY POLE PLACEMENT TECHNIQUE

There is another way to decrease the settling times but it is less

advantageous because acceptable filter performance is balanced against

estimation accuracy. This simply involves moving the low frequency poles

to the left on the negative real axis to a point where the time response

is acceptable. These new pole locations are nonoptimal, thus

degrading estimation accuracy. The hope is that estimation accuracy

sensitivity to low frequency pole movement is small. Table V-15 shows

this relationship for a velocity of 51.44 m/sec only. The results for

5.144 m/sec and below indicate that the extreme root relocation necessary

to give acceptable low frequency behavior produces an unacceptable

degradation in estimation accuracy. At very high carrier velocities

the low frequency settling times are already on the order of hours or

even minutes and do not require severe adjustment.
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Note that for the cases where the EVM is excluded the estimation accuracy

is degraded by a factor of 2 to 3. When the EVM is included the de-

gradation is at most 20% and may be as small as a few percent. Therefore

pole shifting may be a reasonable way to hasten filter convergence

particularly if the EVM is included as a filter input.

Another way to see the effect of the pole shifts is to look at plots

of the estimate error PSDs (power spectral densities) for approximately

optimal and suboptimal pole locations. Figure V-1 shows these PSDs

for the IT-l measurement combination excluding the EVM assuming a

carrier velocity of 51.44 m/sec. The low frequency suboptimal PSD is

1N-TRA(I<K
AO-ApproK. Opt-ma;i;S-Suboptimal;lC-Meas. Combinition

F--T -TFT-Fr 7--- Fr-rT-I1 - F- - -rI I rI -- 1 F TI

- ~ -~ V'~1oci P t0C1.51. l t '1 M./,-:

10 7  .AO

K. K%

",-- 11 W

" 104 -- x':. , .,

103  ,

102  t +4

A t '... L - A

Frequency (Urad/m) 4

FIG. V-1 APPROXIMATELY OPTIMAL VS SUBOPTIMAL POSITION ERROR

ESTIMATE ERROR POWER SPECTRAL DENSITY COMPARISON.
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much greater than the same portion of the approximately optimal spectrum

while the same Schuler peak is produced in both curves.

D. MULTIPLE GRADIOMETER MEASUREMENT ANALYTIC

COVAR IANCE COMPARISONS

Up to this point only the CT-1 and IT-1 measurement combinations

havw been explored. Do the other combinations provide significant im-

provement over the single, pure gradiometer measurement cases? This

question is answered in Tables V-16 through V-29. The covariance data

in these Tables was all obtained from the analytic formulas using the

[HM. It was deemed unnecessary to show numerical corroboration since

the optimality of the approximate filter technique has been shown in

the preceding sections of this chapter. The lowest velocity ?ase is

omitted for velocity error estimation because approximate filters are

not optimal at such low speeds, as explained in Sect. B of this chapter.

The most significant information occurs in the last columns of Tables

V-16 through V-29. Two types of comparisons may be done with this rms

estimate error data.

1. The different measurement combinations may be examined to deter-
mine the optimal (lowest rms estimate error) combination. This
requires that the estimate error values in the 1st, 3rd and 5th

rows or the 2nd, 4th, and 6th rows be compared for the in-track
Tables. In the cross-track Tables the numbers in the 1st and
3rd or 2nd and 4th rows should be examined. This process clearly
segregates the data depending upon the use or non-use of the
external velocity measurement. The most significant conclusion
is that the IT-2 measurement combination is inferior for in-track
navigation when compared to the IT-1 or IT-3 combinations, par-
ticularly in the cases where the external velocity measurement
is omitted. Therefore it would take at least two Bell RGGs
(IT-3 measurement combination) to improve significantly in-track

navigation. The cross-track data shows no great improvement when
two RGGs (CT-2 measurement combination) are used instead of only
one (CT-1 measurement combination). These trends confirm the
ntuitively obvious fact that the best information comes from
he in-track derivative of the desired gravity perturbation com-
porent, rxx in-track, and Py cross-track. Unfortunately
one RGG will supply a measurement of 'ry but it takes two RGGs
to adequately determine Pxx*
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2. The improvement in estimation accuracy possible through the use
of the external velocity measurement can be found by comparing
the E/EVM and I/EVM cases for each measurement combination.
The information added by the external velocity measurement im-
proves velocity error estimation by an average of 50% and posi-
tion error estimation by not more than 10%.

Tsble V-16
IN-TRACK(IT) VELOCITY ERROR ANALYTIC COVARIAV6CE COMPARISON

FOR V = 5.144 m/sec

Measurement J AF'Combinatiton a:

(r/sec) (1/sec) (mu sec)
- _ __-_ _ I _ _

I1E/EVl) 5.144 
1.079

IT-I
(I/EV'%[) 5.144 6.376 

-  0.52

I T-2(E/EV) 1. o76\ - 91.95

IT-2 1.076\ 1 5.473\ -
2 4.814(I/Evm)

IT-3 F6.98]
(E/Ev) -3.43 1.602

(I /E.,o F
(T-3 6.858] 9.505\- 4  0.634

1-3.43

t AF = analytic formula
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Table V-17

IN-TRACK(IT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON

FOR V 51.44 |n/sec

Measurement AF

Combinatio a V
x

(in/sec) (1/sec) (mm/sec)

IT-I 5.143\1 10.79
(E/EVM)

IT-1 5.143\1 6.376 \- 4  
5.195(1/EVM)

IT-2

(E/EVI ) 7.139 693.53

I/T2 7.1:19 4.128\ - 2 41.81
(I/F VM)

6.855\1
IT-3 16.01

(E/EVM) -3.428\1

6. 855 1

IT-3 \ 9.503 -  f. 34
(I/EVM) _-3.428 \ 1 _

AF = analytic l ormulia

* -68-
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Table V-18

IN-TRACK(IT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON

FOR V x 514.4 m/sec

Measurement AF
Combination acV

(m/sec) (1/sec) (mm/sec)

IT-i 3.423N2 88.29
(E/EVM)

IT-1 3.423 5.202 46.93
(I/EVM)

IT-2 5.216 - 149.4
(E/EVM)

IT-2 \-(I/EVM) 5.216 8. 842 - 4  
61.18

3.152\ 2

IT-3 \2 109.11

(E/EVM) .- 1.593 j

1. 152\2 "

IT-3 [ \2 6.45-4 52.26
(I/EVM) -1.593\2

-69-



Table V-19

CROSS-TRACK(CT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON

FOR V = 5.144 m/secx

Measurement AF

Combination av 3V

(m/sec) (1/sec) (mm/sec)

CT-1
(E/EVM) 5.143 I. 079

CT-I 5.143 6. 377 - 4  0.520

CT-2 5.148 1.079i ~ ~~(E/EVM) 3. 421 - 3
1.7

CT-2 5.148 ] \4 0.5197

(I/EVM) J3. 4 2 1 3

In the cross-track direction, that member of a calculated from
Eq. (4.14) corresponding to the measurement of ryz  is an
imaginary quantity. This indicates that the numerator of the
tra nsfer function associated with ry z  should be written with
a first degree s term as

aF = al, SI
yz ryz s=jL s

The foregoing footnote applies to Tables V-19 to V-21.
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Table V-20

CROSS-TRACK VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON

FOR V = 51.44 m/sec
x

Measurement - AF

Combination a 0V
x

(m/sec) (1/sec) (mm/sec)

CT-I 5.142\1 10.78
(E/EVM)

CT-1 5.142\1 6. 375\ - 4  5.195
(I/EVM)

5.137\ I  ICT-2 0.78
(E/EVM) L -jI.656,,- 2 * 10

5.137\1

CT-2 -JI.66 \-2*l 6. 373\- 4 5.194
(I/EVM) . ,

* See footnote Table V-19
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Table V-21

CROSS-TRACK VELOCITY ERROR ANALYTIC COVARIANC9 COMPARISON

FOR V 514.4 rn/sec
x

Measurement AF
Combination af UO V

x
(m/spc) (1/sec) (mm/sec)

CT-i 4.802~ 104.26
(E/EVil)

(I/EVM 4.802'k F. 161,.- 51.07

CT-2 [4.674\ 2] 102.9
(E/EVM)

[j2.079 J

CT-2 4.64 12 6.O79*,,- 50.73

Sep footnote Table V-19
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Table V-26

CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

FOR V = 0.5144 m/sec
x

Measuremen- -k AF
Combinatio b c

(m-sec) (m) (m-sec) (1/sec) (m)

ECT-E -1.675\ - 17 -6.291 - 4 4  3.347\5 0,5

CT-i -1.325\ - 17 -2.993\ - 5 4  2.647\5  4 .512 \ - 1 5  9.98
(I/EVM)

CT-2 [-1.666\ - 1i [6,246\722] 3.347\5 9.48
(E/EVM) 2. 111 \ - 3 4  -2.156 \ - 20 1. 314 \ 2

CT-2 [.6 1 3.7[ 321 3.347\] 449\1

(I/EVM) 1.756\ - 4 4  -2. 156\-20 1.314\2 9.48
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Table V-21

CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

FOR V = 5.144 m/sec

Measuremen I AFCombinat io4 b c k' aR!

y

(mr-Sec) (m) (m-s*c) (1/sec) (m)

CT-1 \ 6  -3.i347 \6

(E/EVM)

CT-i -2..646\6 -1.687 \3  2. 647 \6 6.37e- 17.75
(I/EVM) 3

CT-2 3.349 \6 1 -. 256\ g 3. 347 6  1(E/EVM) I I- 16.87
_____ 3.03\-101 276 1 4.154\3I

CT-2 -3.349\ 6  1 .0 68 \3 3. 347 6](I/EVM) 1.403 -I Lo 2.76 4. 154\3 6.379\ -  16.86
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Table V-28

CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

FOR V = 51.44 m/sec

Measuremen I -AF

Combination b c a' k y

(m-sec) () (m-sec) (1/sec) (in)

CT-I -3.345\7 -2.508 \ 3  3.347\7 34.58
(E/EVM)

CT-I -2. -64 6\4 2.646N 6.375 -  31.78

(I/EV3) 1.686 .

CT-2 31.2
(E/EVM) 5.172\ 1.336\11 [1.313\5

CT-2 3 1 3 \ 6. 373 \- 4 30.26
(I/EVM) 5.539 1 0  .336 \1 . 3 1 3\5
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Table V-29

CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

FOR V~ x 514.4 rn/sec

Measuremeni AF
Coinbinatio1  (b-se (1of/sec)

y

(rn-see) (in)c (/sc

CTi 3.124\B -2.187\4 3.347\8 -102.92

(E/EVM)

CT-i ~ 2.51\8 -1.443 \5 2.647 \- 6.161 \4 67.02
(I /EVM)

'CT-2 -3.041~~ 1.140'~ 347\8]
(E/EVM) I I [ 1f - 98.68

L-5. 16 1j~.677 3 J L4.*152 \6 J

o P [ 9.242\4 1 3.347\8(I/EVM) 3.~840-"1.6 77\3 4-.152i \6 076.2



Chapter VI

GRAVITY GRADIOMETER SURVEYING TO

IMPROVE THE GRAVITY PERTURBATION MODEL

The gradiometer may be used as a survey tool divorced from any direct

INS application. Gradiometer survey data, and in fact any survey data

which provides gravity information, may be used to improve the reference

gravity model used in the INS (inertial navigation system) and consequently

reduce velocity and position error.

The rms velocity and position error can hy found by first writing

(4.4) in the following form

sg sk'W
in

6 (.1)

where the x or y subscripts have been omitted as the equation can be

used in either the IT or CT directions. The velocity and position error

power spectra are given by

4 t(s )  k2

t (s) g 26R(  (+)(_ (-F)(_

and

2 t(s) 2 k2
t, g kq2

1) (s) - • (6.3)

Recalling the variance formulas in (.1.8) and (4.47) the position and

velocity error variance can oe expressed as

1w~tkq ( s2 q2 1 f 9 g

-R 2 +  () ds (6.4)
S

i -x1-



and

22 t
ii ;V kq2 I. s 4) s ts)

or = 2+ - ds o (-.5)Nx 2 7hi 00

Again the integrals in (6.4) and (6.5) can be evaluated either numerically

or analytically. Assuming a reduced low frequency perturbation content

due to the added survey information, the analytic integral evaluations

consider only the Schuler poles. The validity of this assumption can

again be tested by comparing the analytic and numerically obtained vari-

ance values. The analytic formulas are

2 kq 2  cg "Js

0 -2 + 2 (6.6)61 2w 2ktw
S S

and

N = *,t(.,, )(6)
2 kq 2  g srV 2 92k -s(6.7)

The basic theory used to determine the updated gravity perturbation

spectrum (T (s)) is taken from Breakwell [12]. It is presented here for
t

completeness. The objective is to estimate some scalar function - (x,y)

related to the surface perturbation potential ,U by

(,, -Sf(71s),U( s ; h0)- (6.)

whore (6.8) is written in the Fourier domain and h1 is the height above

sea level at which the estimate of - is t.o be made. The measurement

equat.ion ma Inb e expressed as
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00<l nil
(7s h2) = j (MS) iU(T ; 0) + £ (6.9)

where h2  is the height above sea level at which the survey is taken.

Assume that the estimate of - at height h is given by

(s; = ;Ts b h ) (6.10)

The resulting estimation error is

h ) = h( s h) -t(" s h )

= ,S)H ( 7js ) _f ( -s ) ]Au(jS ;O)+*T )

which means that the estimate error spectral density is expressible as

0(70S;hl = [T(S)H( _5 s ) -f(_ U ;O )

X [ H T ( Ms ) '( ) - f ( ,)S )] + ,T( _ oS )R f( s ) (6 .12 )

In this situation causality is not a factor as it was in the real time

filter case. Therefore to assure the minimum mean squared estimation

error, given by

r- T 2  )x y (6.13)

it is sufficient to minimize (6.12) with respect to ,(w). This results

in the statistically best weighting of the measurements for estimating

S, written as

IV(7As) SW [. -=s ¢ u ,;0)1'1 ,, -,-1]- ( ;., (,S;o)J.(,s . (6.14)

T-8.--

--I%
- 8?r/

______________,,______________________________________



Substituting (6.14) into (6.12) yields the following compact expression

~S (S o S _,;(,- s"a(" h AU-s; O)f(- )s)f(Ws

~fSh) - 4(.5

1 + u (S; o)HT(w )R-1H(-ws) (6.15)

Notice that the numerator of this expression represents the a priori

knowledge of -t anti the second term in the denominator represents the

information added by the survey. To obtain the required one dimensional

s
spectrum, (6.15) must be integrated with respect to w . In addition the

y
time variation spectrum, required in (6.4) through (6.7), is found simply

by dividing the one-dimensional spacial spectrum by the IT velocity.

te desired spectrum may then be expressed as

t; 1 T- d s . (6.16)

x i+ O (S;o)H (tS)R- H(-W s )

Equation (6.16) may be used to determine the updated spectrum t (s) in
9

(6.4) and (6.5) if - is equal to g. This, in fact, is the case when

the updated gravity model is used in the basic navigation loop.

In the covariance analyses in the next section, two survey schemes

are used. The first is a ground level gradiometer survey (GS) where the

measurement is assumed to be the vertical perturbation gradient, p
23

Recall that at least two Bell RGGs are required to obtain this quantity.

In all the a priori studies the BHM is taken as the gravity perturbation

model to be updated. Therefore the surface potential fluctuations,

from (3.4), are described as

3 -170'1 ~i
='; , C (6.17)
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The functional relationship between (6.17) and r is found to be
zz

- ~ -2 -1701h 2= Vs e (6.18)

and

-s 2
H(V)H(_w) = -kl(O e (6.19)

The second type of survey used is the proposed low-low GRAVSAT con-

figuration where two low earth satellites follow each other in circular

polar orbits and are connected by a very accurate Doppler rate indicator.

The relative velocity changes between the two satellites indicate gravi-

tational field perturbations. The functional relationship between the

Doppler data and the potential perturbations is

satellite satellite -I s h2  Ws A

v - V 2 AV = 2j sin -x -U s; 0Vx  O2xxVcir Sf 2  A(d 0

(6.20)

where V is the unperturbed circular velocity and A is the satellite

distance spacing. Assuming that the perturbations of' interest have

wavelengths substantially greater than *A then H(i s) from (6.20)

may be approximated as

_ e .i,IGI'- L cos f .21)Vci r

where 0 denotes the direction of w . Then

-- 2

H% ')H(-- " ) 2 1 Cos ft (6.22)
V .

CI t
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It is possible to modify (6.22) to compensate for the rotation of the earth

under the satellite ground track as explained by Breakwell [Ref.

12, p. 3381. This correction is necessary since the north-south and

south-north satellite ground tracks are not parallel. These tracks diverge

at an angle -r having a value of approximately 1/16 radian at low

latitude. To compensate for this effect (6.22) should be replaced by

-21 7sl h2  2
H(wS)H(-Ms) = A e 2 i 2 [cos 2 (fte)+cos2 (+e)] (6.23)

cir

or simplifying (6.23) using trigonometric identities

-2 5 h2 2 2 2 -2 n 6.)_21M'-h

-s - e 2A 2-s2 2 -2 .2
2 (wS)H( = ') cos -e + Ws sin ](6.24)2  

x y
cir

For both the gradiometer and satellite surveys the measurement error is

given by the following formula in the scalar case

20 ME

R = No AS M(6.25)

2

where rr is the mean-squared measurement error, N is the number of

survey measurements, and AS is the area surveyed.

The analysis in the following section investigates both the IT and

CT directions. The transfer functions relating gx and gy to the BHM

perturbation potential are respectively

s 2 " 2 1 S Ihl
f( )f( y) (5)2 2 (6.26)

-21 1 h
_s, 2 1 (6.27)
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With these relationships the error spectra from (6.16) and subse-

quently the INS position and velocity error may be determined for the

following four separate direction/survey options.

IT/GS (in-track/gradiometer survey). This combination indicates al-

teration of the gx spectrum using gradiometer survey data. For this

case (6.16) becomes

x N/AS 4  2Hs~h d10s1y 6.28)

2

IT/SS (in-track/satellite survey). This again indicates alteration

of the g x residual but this time with a low-low GRAVSAT satellite survey.

The updated gx spectrum may be written as

3 -21.'ISh I

1*- s) 2  (De h
cg (w;hl) = i=D dos (6.29)
g VF s2 2 -s 2

x y

where

-s 3 -2
C(Ws) 2 N/AS V e h (6.30)

er cir i=1Doppler=

CT/GS (cross-track/gradiometer survey). This again indicates altera-

tion of the gy residual but this time with a low-low GRAVSAT satellite

survey. The updated g y spectrum may be written as
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1 ~ 0 (5)2 ~c, 2bSh

)y e

9 ~ ~ ~ a i 0 hx 2 ht dy (.1

CT/SS (cross-track/satellite survey). hfere the g spectrum form-
y

Lila updated by satellite dlata appears as

3S) 2 w h

0 (P t h ) ()[w )w +w) i (6.32)
9 1 )'12c 2t s2- iY

x Y

The first step in doing the covariance comparisons in the next

chapter is to nuimerically carry out the quadratures in (6.28) through

(6.32) to obtain the updated gravity perturbation spectra. These spectra

are subsequently used in the numerical evaluation of (6.4) and (6.5)

to be compared with the position and velocity errors obtained from (6.6)

and (6.7) where thc Schuler values from the updated spectra are used in

the analytic formulas.



Chapter VII

COVARIANCV. COMPARTSON FOR REAL TIME VS

SURVEY USE OF A GRADIOMETER

The objective in this Chapter will be to compare the real time

estimation errors in Sect. B of Ch. V with the velocity and position

errors resulting from the use of an updated gravity model. To obtain a

valid comparison the survey parameters must be chosen judiciously,

particularly in the case of the gradiometer survey. The survey vehicle

velocity and gradiometer averaging time are the principal parameters.

Assuming that the latter is fixed it is important that the gradiometer

survey and carrier vehicles have the same speeds to assure equal wavelength

resolution in the realtime and survey applications. Actually, the im-

portant parameter in the survey situation is the number of survey measure-

ments per unit area (N/AS). If the survey track spacing is set at a

distance equal to the minimum wavelength information desired (10 kin),

and with a fixed gradiometer averaging time, the survey velocity completely

determines the measurements per unit area and the time to survey a speci-

fied area. Then the claim of equal survey and carrier speeds ensuring

equal resolution is contingent on the track spacing chosen. From a

practical standpoint, the survey times for a given area are of interest.

Table VII-l gives the survey times for an area of 1 X 1012 square

meters, about 1/15 of the continental United States.

Table VII-1

SURVEY TIMES FOR 1 X 1012 SQUARE METERS

Survey Velocity Survey Time
(m/sec) (days)

0.5144 2250

5.144 225

51.44 22.5

514.4 2.25
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Note that the lower velocities take excessive survey times. Gradiometer

survey height also influences the resolution question. Thus to maintain

equality the gradiometer survey and carrier vehicles will also have equal

assumed altitudes. With these facts in mind the gradiometer survey para-

meters are as follows:

survey height: zero km

survey velocity: carrier velocity

gradiometer averaging time: 10 sec

track spacing: 10 km

gradiometer accuracy: I E~tvos

The GRAVSAT mission parameters are more interdependent and conse-

quently less flexible than the gradiometer survey quantities. Nevertheless,

the GRAVSAT survey provides an interesting alternative to the gradiometer

survey with very real possibilities. Nominal parameters for a low-low

GRAVSAT mission might be

satellite altitude: 180 km

circular velocity: 7.796 km/sec

Doppler accuracy: 1 x 10 - 6 M/sec

satellite separation: 3 deg (341.87 km)

length of mission: 6 months

time between measurements: 8 sec

Assuming these survey parameters, Tables VII-2 and VII-3 compare the

real time data from Tables V-5 through V-12 with the variances obtained

from (6.6) and (6.7). In order to standardize the data the optimal value

of k is used for both the real time and survey applications. In the

real time case the optimal k is given in (4.31) (x or y subscript as
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Table VII-2

REAL TIME VS SURVEY VELOCITY ERROR COVARIANCE COMPARISON

EVM = External Velocity Measurement

GS = Gradiometer Survey

SS = Satellite Survey

RMS Velocity C A R R I E IRSeoty CARRIER VELOCITY

or Velocity (m/sec)

Measurement Estimate

Combination Error

(mm/sec) 0.5144 5.144 51.44 514.4

AF \-7
TaV 4.1 0.5196 5.195 50.8

IT-1

(I/EVM) NI
a aV 7.098 0.493 4.93 47.62

x

AF
a AF 4.095\- 7  0.456 2.574 14.46

IT/GS 
x

NI
a 0.0177 0.422 2.541 14.32
F)V

x

VAF 4.095\ - 7  8.295 16.94 10.72

xIT/SS
NII"/SS 6.923 5.95 23.14 11.54

AF
agV 1.382 -  0.519 5.195 51.39

y
CT-1

NI
(I/EVM) aNv 4.089 0.4934 4.965 50.98

yAF

o'[AF 1.382V - 7  0.4022 2.544 14.46

CT/GS y

NI 6.556\ - ' 0.386 2.52 14.32

F

CV 1.382 \ - 7  5.18 :30.37 57.18

CT/SS NI

a 3.99 4.46 22.77 56.54

y

Note: Data nss"I'ves BuIM (B1n-a l I l le r Model) prior to survey iipdate

t
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Table VII-3

REAL TrIME yS SVRVEY P9ITIOW! ERROR COVARIANC COMPARISON

!'VM ,N 1×1 I .a .I Vjocj Ly MeaisuiremenL.
GS GradiomLeter Survey
SS = Satellite Survey

RMS Positioni C R IR V L CTRM oii n C A It R I E It V E L 0 C 1.T Y

or Position (n/sec)
Measurement Estimate
CobIation Error

0.5141 5.144 51.44 514.4

AF
3.79 8 21.47 56.71

IT- 1
N(/EJ) 3 20.58 58.76

a A 3.3\ - 7 0.367 2.076 11.67

IT/GS
N;

a 0.219 0.556 2.297 11.72
x

AF
IT/SS . 3.03 \ - 7  6.69,: 1!3.r 6 8.646

IT/SS x

NI
a N08.8 5.55 11.55 8.46

AF
CT)1 11.9 21.17 37.83 76.42CTr- 1 F t y

([/EVM) N

cr N 11.:89 21.12 37.54 74.77

AIl

AF 1.115 \ -7  q.3244 2.05 11.67

CT/GS Y

NI
G 0.113 0.468 2.23 11.75

y

AF
CT/S1.1Y5: - 7  4.18 24.47 46.12

CT/SS Y

a 110.82 34.29 25.4 46.23y

Note: This data assumes BHM prior to strvey update.

0
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applicable) which is attained in practice by simply includi'g the

external velocity measurement in the IT-1 or CT-1 combinations. For the

survey case, k, used in the basic navigation loop is chosen using (4.31)

t.t
except that the update of § (.jw )is (done a priori so that

g s

B = t (jw ) (7.1)

where the value on the right hand side of (7.1) comes from the updated

gravity perturbation spectrum.

From Tables VII-2 and VII-3 three things are immediately apparent.

First, for the low velocity survey cases, agreement between the analytic

and numerical standard deviations is poor for velocity and position

error, This is not surprising when it is remembered that neither the

analytic velocity nor position results take into account any low fre-

quency contribution. The existence of a dominant low frequency contribu-

tion produces the observed discrepancies. The second obvious fact

that the gradiometer survey always produces more accurate results than

the real-time gradiometer. Reflecting upon the situation, his too is

is an expected result since the gradiometer survey gathers information

along many tracks while the real-time gradiometer has knowledge only

along the present vehicle track. The third and most difficult trend

to explain is the GRAVSAT vs gradiometer survey behavior. In general,

*I- gradiometer survey gives better results than GRAVSAT. The high fre-

quency gravitational potential is attenuated with increasing altitude.

This makes the ground-level, I Ebtvos gradiometer more sensitive to short

spatial wavelengths (characteristic of Schuler frequency at low velocity)

than the 10 -6 m/sec Doppler at satellite altitude. However, a second

consideration working against this trend is that as the carrier velocity

increases, so too does thc spatial wavelength corresponding to Schuler

frequency. It just so happens that for the highest velocily IT case the

Schuler spatial wavelength is so long thai GRAVSAT has a superior signal-

to-noise ratio when compared with that of the gradioieter at ground level.

Had speeds above 514.4 in/sec been considered, trends in the data suggest.

this same type behavior might appear in the CT direction also.
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A. CONCLUSIONS

The conclusions resulting from this work can be classified in two

areas: those resulting from the real time work, and those from the

survey application of the gradiometer to inertial navigation.

A-1 Real Time Gradiometer Application

It has been shown that the modified Wiener filter analysis produlces

low-order filters for inertial navigation system velocity and position

error estimation.

Analysis of the accuracy of these filters is accomplished in several

ways. If Kasper's rational gravity model is used, covariance compari-

sons with the Kalman filter show agreement in the rms position and

velocity error estimate error typically to within 1%. An indirect

method of proof is needed for the more accurate leller gravity model.

This is done by a comparison of analytically and numerically obtained

estimate error results. Agreement of the analytically and numerically

obtained estimate error values is always within IY;,, on the average

about 5%, and in some cases below 1%. This assumes that for velocity

estimation the carrier vehicle has a velocity at or above 5.144 m/sec

(10 knots). Therefore for the single gradiometer measurement cases used

in the above covariance comparisons the approximate low order filters

are very nearly optimal.

The approximate nature of the derived filters lends to the carrier

vehicle velocity limitation mentioned in the previois pnragraph. Fully

stated this limitation requires that the position and velocity filters

be used only on carrier vehicles traveling at or above 5.144 t/see (for

the assumed levels of external velocity measurement noise and gradlometer

accuracy) to avoid at least two problems that arise. These problems are:

- 'A5- rW
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(1) the velocity filters contain insufficient Iu:,4 frequency gravity

perturbation compensation which makes them inaccurate at low velocity

where there is a large low frequency gravity perturbation contribution;

(2) The position error filters do compensate low frequency gravity

disturbances which unfortunately produces excessively long low frequency

pole characteristic settling times in the low velocity cases. In spite

of a pole placement technique which is marginally successful for mid-

range velocities, and the improvement of the Heller model to reduce

the low frequency portion of the gravity potential perturbation spectrum,

the under 5.144 m/sec velocity range is unsuitable for approximate

filter application at the present time. Lower velocities may be more

suitable as future gradiometer and GRAVSAT surveys provide greater

knowledge of the earth's gravity field.

The ability of the Wiener technique to produce approximate filters

for multiple measurement situations makes it possible to compare the

advantages of using two gradiometers as compared to only one. The

effect of using the external velocity measurement as a filter input

may also be explored. In the cross-track direction using one gradiometer

(CT-l measurement combination) as opposed to two (CT-2 measurement cora-

bination) produces a degradation in estimation accuracy of not more than

2' for velocity error estimation and 11% for position error estimation.

However, using one gradiometer in-track (IT-2 measurement combination)

as opposed to two gradiometers (IT-3 measurement combination) yields a

degradation in velocity error estimation accuracy of from 0.5 to 1.5

orders of magnitude and in position error estimation accuracy of from

I to 2 orders of magnitude. Clearly, if significant improvement over

the a priori position and velocity error values is desired, two gradi-

ometers are required in-track while one will suffice cross-track. Addi-

tional estimation accuracy may also be obtained for a given gradiometer

measurement combination by simply including the external velocity

measurement as a filter input. In most cases of velocity error estima-

tion this results in an improvement of about 50%. The improvements in

position error estimation accuracy are much more modest, being generally

on the order of a few percent, due to the increased effect of low

t -96-
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frequency disturbances as opposed to those at Schuler frequency.

A-2 Survey Gradiometer Application

Of the gradiometer and GRAVSAT surveys considered in this research

the gradiometer option is more accurate by at least a factor of four,

except for the highest velocity in-track case. As expected, the data

show that the gradiometer survey always produces more accurate results

than does the real time gradiometer scheme. However, it may not be

possible to obtain gradiometer surveys over all potential carrier

vehicle routes. Even the GRAVSAT survey with worldwide coverage showed

resolution problems at spatial wavelengths greater than its altitude

caused by high frequency attenuation of the gravity potential. There-

fore, in spite of the excellent INS accuracy attainable with the grad-

iometer survey, the most likely scenario for improving INS accuracy in-

volves immediate real-time use of the gradiometer with a gradual improve-

ment of the gravity model from data collected in surveys. These data

could come from any source supplying gravity information, even the

stored real-time gradiometer outputs. One final question is the ability

to store aboard a carrier vehicle the large number of coefficients

necessary to describe a world-wide gravity model with a desired resolu-

tion of approximately 10 km. One solution to this storage problem

might be to use an alternative gravity field description consisting of

strategically placed mass concentrations in the projected area of

vehicle operation. This makes it unnecessary to store a world-wide model

thus alleviating the storage problem while making the actual computa-

tion of gravity simpler.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

The approximate filters used to estimate position and velocity

error from the real time gradiometer/INS combination were derived by

ass iming "white" gradiomc.|cr and externtl v(,1(wciiy n ioll'ariicl| u mis.,

Real gradiometer noise is colored. Data already obtained I'rom the

gradiometer manufacturers and processed by the Analytic Science Corp.

could be used, along with Navy test data, when it becomes available,
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to develop more discriilnating Iilters, Fitting the assumed external

velocity ieasurement ndise to a particular carrier vbhitleis measure-

ment eqtuipment would also help to develop better filters.

The method used in this research tO analyze the error spectrum

of the gravity lield improved by sUrvby data provides several options

for further study. This error spectrdm analysis method could be used

to optimize gradiometer survey parameters. Additionally it could be

used to compare diflfctent meastdement hftemes as was done with the low-

low GRAVSAT and ground level gradidhaetbi suiveys in this researeh. Two

other survey questions that might be extlored are: (1) The possible

problems and merits assteilated with stfnihg real time grddiometer/INS

data for post proCessing and gravity mbdel improvement; (2) The advan-

tages of flying a gradiombter on board the DRAMYSAT spatei-aft as an

additional data source4
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APPEND)IX A

POIssoN'S FonmulA FOR UPWARD) CONTINUATION

OF TIM EARTH's POTENTIAL

To prove Poisson's formula it is necessary to relate the following

spherical harmonic forms for the earth's potential:

U(R~ 0, b) (A1

U( r, 0, c0) -41 31J m ) (A.2)

where

Y P(sin Oel for M 'kO (A.3)

Am KImph(sin e)e i MI~ for m 0 .(A.4)

Note from (A.1) that

1 1 (A5

where the integral specified is over the entire earth's surface. Assuming

that the Yt 's are not only orthogonal over the sphere but suitably (fully)

normalized [171 then

1li (00 $)W =e 41mh (A.Fe)
J 2 m21  1 2 M1 2

I ________ ___________________________99 __



Sitbstituting (A.6) into (AjS) yields

The re fore

Ji U(R Oj Y* d(Q (A. 8)
im -41 J 1)

Substituting (A.8) into (A.2)

R 2+1 e~ ~ (A.9)

Making use of' the iduntity Y(e 4')u1,O'j)fa

p P(Cos Y) = 2 r7 hi ~((r)) Y, gin (AJ1O)

I where jr is the angle between (1, 0, 0) and (1, 01, 4)~ (A. 9) canj
be written as

Since jr is the angle betweettI andi r then

the r 2 [1 1L99 2 r8 (A.12)

andsubtittiig h tlequantitlies
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R

= and = cos4 (A.14)
r

then from (A.12)

2 r~[i + 2 (A.15)

Substituting (A.14) and (A.15) into (,.13)

R2  2D R ie-e
= RI + r -2Rr cos ] E ( ) Pe (CO (A.16)

Taking the negative of the partial with respect to r of (A.16) yields

2rR(r - R cos 0)

D A~O r

Subtracting (A.16) from (A.17) yields

2rR (r-RI)cos 
=)-R)D

2  =L - + ) IP-(cosi)- (A.18)

D 3 r

or

Putting (A.19) into (A.11) gives

22

RR,(r 2 ( RD U(II ,(,t

U(r, e, 1,) = R d(.(r. R2 U- .2 i, )3/2 (A.20)

This equation applied to the perturbation potential is the desired result.
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Appendix B

SPHERICAL HARMONIC AND HELLER MODEL RMS POTENTIAL

COEFFICIENT VARIATION EXPRESSIONS

The GEM 10 [14] data is given in terms of C 's and S 's from

the following model

u(r,et) = () 13m(sin 0)[Cimcos m$+ZemSin m4] . (B.1)
R) _ m

2

Therefore the equation for Ca (Eq. 3.15) is best derived using the

following spherical harmonic form first defined in (A.2)

_ mk R £d -l

U(r, 0, O) = - - (-) 41 m Yem ) (B.2)

is is first necessary to establish the relationship between C ,ll S11

and J m" To do this consider the plus and minus m pairs in (B.2)

for a given

Ri;(H)-  J $mKm ,,r(sin )[cosm( + i sin meD] +5 J (m)K (-n
D ~(13.3)

X (-m) (sin 0)[cos m4 - i sin m, j

Assuming that

Pm(sin rq) Pe-(sin o) (B.4)

K, m -

( 2 1o,,,)5
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(-m) (" o(-m

then (B.3) can be written as

(si 3nCos m4 + i sin m]

R- (2-8) (B. 7)

* + J,() Lcos N- i sin na4 j

* Therefore for even m (B.7) becomes

L)- m(sin 0) Cos W sin nl4 +(B.8)

~---- , sn(2-5 onlO even in

and for odd m

R.-,r (, 4-,t.e 1 1 +j
Rf, r) Pgem(sin 0) L i( u Co Miop-'A MI inN

R (2 5ei' - N IL(-)oodd mn

(B.9)

Then for even in let

e even m (2 - F) even m (B.1)

(2-h"oin
t

even m Om even m

and for odd m let
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e(-m) " M Idd - (B.12)
Cmlodd m= (2-F, om) m

s x (B. 13)om

Semi odd m= - .[! r2~om) 'oddm (Bm

Substituting (B.1O) through (B.13) into (B.8) and (13.9) and summing over

the required positive values o' . and In gives

S£R &91

U(r,e0,s) = _ (-) Pm(Sin )1co n + + n m4] (13.14)

which is identical to (B.1).

To solve for Jtl and J (-M) in terms of C and S ," first write

from (B.10) and (B.11) for even m

(2 -5om)IC m em +  el(-m) (B.15)

- 1(2 - )= m - .(-m) . (B.16)

Adding (B.15) and (B.16) yields

23JM = (2- om)[Cim- iSm . (13.17)

Equation (B.17) is, however, inaccurate f'or the case 11 0 [or which

the following relation holds
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o (B.18)

To incorporate (B.18) into (B.17), write 2 as

(2- om) (2 - om) = (B.19)

Then

= - LC - i S] n (B.20)
(2- r) ~" ven m

om
After subtracting (B.16) from (B.15) this snme type analysis yields for

even m

(2 Tem ) even M * (.1

Using (13.12) and (13.13) to analyze the odd m case yields

=- iI + is i] (8.22)
(2 om odd M

- [C + i* (8.23)

(2 F) OModd m

Rewriting (B.20), (B.21), (B.22), and (B.23) in the following more com-

pact form

= 2 -L.om.t [C m 
- i S&I (B.24)
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[rn + S ] (B. 25)

It is also possible to re-express Y as

-" ZM Pim( S i  ), - m  (B. 26)

(2III

(2 _ :om(

From (B.24) and (B.25) the following equation may be written

J J (C + s (B.28)

The expected value of (B.28) is defined as the rms potential coefficient

variation. Therefore

2 1(2 + "

This gives us the first part of (3.15). To derive the Heller model

2
counterpart to O- begin by specializing (A.11) to leller's three layer

I
model

U(R 9, ¢) = SVff (29/-)P,:cos Y)

(B.30)
X (Ri D i/R 1)) U(R, , 01', )d1,1

Substituting (A.1O) into (B.30)
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3 n -i.£'i 2

xd (B. 31)

Again, going back to App. A, Eq. (A.8)

"A =-(P,.. O, 2)*'' 0,)dl (B.32)

in conjunction with (i3.31) yields

- I) i i
ft- J2m - 161T2  

- mP_,"-- gm' (' '

(B.33)

But recalling the identity

(B.33) simplifies to

Since~ ~ ~ ~ ~~' r,- ndm "i B3), he fo gvn n mol

Sne ter Pn tane m' m . iqunew be.) non.,eroa gienr (B.a5d m ony

one term in the 7"r sequence will he non-ero. Therefore (B.35) may
P, mI
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be written

RY' )U I?' j uDi~n, ;dc.,* (it. 3C)

MultiplIying- both sides of' (BI. 36) and t Ifiei r coump Ilex conjutgat us an(Iti faki n:,

the expected value gives

X IMr (B. 37)

Because the potential varia tions From dil I c renti she 1Ils are uro r tel: ed.

then

E (RC D U zI lt fi I' I- .I I8)I)CI

= ~ I ~tj(;7I)i)fr fo~r.

where f (f1~ is aniv function ol P and Applvin_, (13.38) to (B. 37)

2 28~r 2
I

However, the integal fin (13. 39) equas .1 r I'eeot -.f111 1~p iF. i 11:. (B 9

us ing this, fact ; i yes I tc des i tvt rv's it

2 -1) (12,-+)
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Appendix C

LOW FREQUENCY FILTER CONSTANT AND) RMS POSITION ERROR

ESIIMATE ERROR D)ER IVAT IONS

The measurement combinations used in this research are given below by%

number preceded by the assumed direction of estimation. Note that these

derivations assume the use of the Heller model.

CT-i) If a measurement of

z = e(C.1)
xy

is taken then

H =[0 1 0 0 03] (C.2)

and

It= r1 I (C.3)

Equation (4.70) gives the root

3

Using (4.76) to determine Ci

(-)(-4k A)Ct -L2k 3 B 0 (C.5)
2 3 2

then
k BV

a 3 1 x (.C
A -2 2CC

AF
To obtain (ftgk the following integral (I'roi 4.49) must be evaluated

yP.
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t TT4t (s)lT (s)

g' B
y (is 2k3 SO

- -ds - J 2k -ds (C. 7)

S

Using the Cauchy residue theorem this equals

kB S2kBf 3ks( ko

ds = - - (C.8)

s s

or 2 2 kB of

(AF 3
j 2 (C.9)

Tro incluIe the EVM in this and any of the subsequent total estimate error

variance formulas the only modification necessary is to change k to k'.

CT-2: In the case wher-e

= + e (C.0)

then

I1 0 (C.1 1)
0 0 0 1

a fl(1

L . (C.12)
0 r2
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The low frequency pole, obtained from (4.70), is

1. (r 4 24k A
1 2 5)

AA 2  2krI(C.13)
148Rk Ak A :36k A +k3 5 4  2

For multiple measurementthe vector is obtained from both (4.76)

and (4.77). Equation (4.76) gives

L-~ :] 1 [Z:k](C 4

then

B 0

3 3

1 A 2 2 (C.15)

3 s s

To determine a 2  use (4.77)

r  -2k A s 2 6ksA s r.
3 4 1

The second row of this equation gives

6kAI 0 p0
* *2 2 (C.17)2 w- 2(24kA + r2 )s 5 2

'the list inLegral in (4.919) cnn now be (xpressed is
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trT

gTT B B
1 _________d - - 2k 3 sO I 6k 40 ds(/1H

2T, "J 2,,]1 2 ( +
s

The evaluation of (C.18) gives

AF 2 kB ifi k Bc

2ktyf~+ 402 (C.19)

S~t 2

IT-i: It' the measurement is

T + (C.20)

Then

and

R =r (C.22)

Thec chiracteristic equation from (4.70) is

k~ A 4 r 0. (C.23)

Solving For the two left-half plane poles results in

whr 2 i+ 2 lo 4- + 2 (C.24)

wher L s alowfrequency factor coefficient defined as

L, (C .25)
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To determine d and e write (4.79) as

kA

2 2 (ds + e) 1 k I (C.26)2 kl WC 26)
S + S

"large s" 'large s

Using the approximation

(1 (C.27)
2 2 = s Ls

S 4 - S

L

(C.26) may be written

small
d - x + e -Zd s 0 (C.28)

Ws

Zeroing the first and second degree s terms gives

V
(9 (C.29)
2
S

2V
x (C.30)

Lwd
S

The low frequency rms variance is obtained by integrating

t HTT
t (s)HTr(s) B 3

1 k ls (ds 4 e)
gx P  

I= s d ds. (C.31)2 -- ) ( 4 )
S

Summing the residues at both lel't-hair plane poles in (C.31) gives

2kBe
AF2 2k e
,) -2 22 ((. 32)

S
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lT2- or a mieasuremuent of

V. 7 41 ( 4 T 4~r~ 4 * (C. 33)

then

II zFl 1 0 0 0 1 (C 34)

ind

It -- r (C. 35)

vrhe characteristic equation from (4.70) is

A 4 A 2 /Ak IS 4 2k 3 , 4'(6k 54 rj 1 0* (C. 36)

vie left-lf ))line poles or (C.34) produce a low frequency factor

expressible as

(0,4) S2 + 2(NVlS + W 2 (C. 37)

kA A2 11/2

A A A)-(C. 38)

si1- t a n (C. 39)

2 A

I'

m(,conergnceconitin fr tis it-116- t



[k As + 2k As 2+ 6k A ds +e - 01 3k +k13 S) (.
1 2k3s + s 2 +2 3 (C.41)

WNI s

"large s" "large s"

4 3
Assuming that the s and s terms dominate for large s and writing

2w6s I 2NI1

-[I1 1 (C.42)
s 4 2WN61s

(C.41) becomes

small

(d - )s + (e - 2wN 6d)s - 2/r4 = O (C.43)

2
Cancelling the s and s terms in (C.43) gives

V
x (C.44)
2

2=N'lVx (C.45)

2
S

The expression to be integrated to obtain the low frequency analytic

variance is t - T lf~l t(s

x (kis 4k II)(ds4e)
1 ds 2._ ds

ds-) (i.) (C.46)

Summing the residues at both of the left-half plane poles in (C.44)

ultimately gives
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(N )2 -k1LIF'[ - 2b .2+ 26 & 2 b 2~

kIt 2 2 2 ItI ((. 47)

+ ~ ~ [2 -+ 2 k 3,it 1 I f 3 ,(.C 4

where

2 cos tan- / (C.48)

3

IT-3: For a measurement ofrr +L1

Zx 2z I 7 + e, (C.49)

2 z y 2xx zz-

the n

1 o o ]
- [(C.50)

0 0 0o

10 .2

The characteristic equation, again from (4.70), reduces to

27 AA 5 A jjkA2 4 A 2 A 2
(7-kk kr -k )s + (4k ir)s + (30k r + r ) = 0 (C.52)

215 4 1 2:1 3 1 5 1

where it has been assumed that

r, r 2 .(C.53)



2

If r1  is small then the s term in (C.52) is negligible and the

equation becomes

4 30k 5, A ,r 2

s45 1 (C. 54 )

(7 kAkA 5 A2- k1 5 4 2 3 -4  ,,I )

Solving for the left-half plane roots the low frequency' factor is

2 2 2
( +) s + - s-j (C.55)

L
2

where

27AA3 A 2 5 A 1/4t--k k + -(k )  4 .rC5/
L 2 1-5 -A - ). 4 1r.

(L0k 5  + rI)r 1

Here the convergence condition (4.79) is

kS+ 2k s +6 -k 1 -ks 2__ _
2

__(2_

A 4 A 2 A kA 4 5A 2 A (I s + ejks + 2k s

"large s"

1 l 3 53' 35 S 2 1) -

A 1 4 +('. 57)

L21 2 3 5 4 13k.

"large s"

-119-

B .. B

i~~ ~ ~ ~ ~ ~ ~~ ~ ~~~~~~~~~~ 1- s + . . .... 3 III ........ ... .IIIIs" Ii. ... ' -- ... . ... I.. . .. .'. .



4 :1
II* tile s ,andI s trls dominate, 1.11is reduces to

A [1 d(S4 CB 1
k 1 1

2 2 (C.58)s 4 -, d2s 4 C W

L 2 4JL 2  2, 2~
'large s"

Substituting (C.27) into (C.58) yields

small

2d~
1 2 2d 22 [ ]

(] [ (0- -- )s Vx s
2d 2  - = 0 . (C.59)

d~2 e 2 \2,

small

Using only the first equation in (C.59) since the two are linearly de-

pendent gives

d ' Vx s2 [ 2dl 2d 2
d,4 L - , + [(,L--- +I (e -- ]-ls = 0. (C.60)

1 I 2 2 ~ 1  L 2d + 2 - 2L
S

7eroing the first and second degree terms in (C.60) gives

2(i 2d 2

(e1  4 ) 2I(e2 ) - (C.61)

V

1 2 (C. 62)

This results in 'our unknowns but only two equations. The remaining two

equations come From (4.80) expressed as
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kls + 2k s + 6k 5 + r k A4 -A s 12kA

IA 4 5kA 2 A I A 4 A 2 A
[2 1 2 k3S 5 4 1 3 5 21 K :2~" 'is+ 3 +2k 5  -kls -. 2k's 424k

sml~l s

= 0. (('. 63)

For small s and small r (C.63) reduces to

2 4 (1S 4 e2

2 2

Using only the first of the equations in (C.64) because of their linear

dependence gives

(d 1 + 2d 2)s + (e 4 2c) 0 (C.65)

This immediately produces the conditions

(I I 2d 2  0 ((".6)

C1 4 2e 2  - (C.67)

Solving (C.61), (C.62), (C.66) and (C.67) simultaneously produces

4V

-- a (C.68)

s

2V X
d -2 ' (C. 6q)

S

e2 
((' 70)
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4Vx
-2 2 (C. 71)

3Ltw
S

L'he analytic low rreqlency variance integral reduces to

4 ., (s)II, I r (S )

rT A Is 4 +A 2S3 4A 3s 2+4
2 .,()-~ 2iij ~ 2( 3 2)ds (C.72)

whe re kB

A = dlk B + T d 2  (C.73)

kBe2
A2 = elkB 2 1(C.74)

A (dk B  + 2kBd (C.75)
:1 1 3 3 2 (.5

A = ek B +2ke
4 1 3 3 2 (C.76)

Solving (C.72) again with the aid of Cauchy's theorem the analytic

variance equals

(AF A 2 A2 A 3) (C.77)

S
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